It’s 11 24/64 i did this too
Answer:
the answer is probably inverse or joint or combined,really haven't seen this type of variation before
Answer:
![\sqrt[4]{\frac{16x^6y^4}{81x^2y^8}}\rightarrow\frac{2x}{3y}\\\sqrt[4]{\frac{81x^2y^{10}}{81x^6y^6}} \rightarrow\frac{3y}{2x}\\\sqrt[3]{\frac{64x^8y^7}{125x^2y^{10}}}\rightarrow\frac{4x^2}{5y}\\\sqrt[5]{\frac{243x^{17}y^{16}}{32x^7y^{21}}}\rightarrow\frac{3x^2}{2y}\\\sqrt[5]{\frac{32x^{12}y^{15}}{243x^7y^{10}}} \rightarrow\frac{2xy}{3}\\\sqrt[4]{\frac{16x^{10}y^{9}}{256x^2y^{17}}}\rightarrow\frac{x}{2y}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7B%5Cfrac%7B16x%5E6y%5E4%7D%7B81x%5E2y%5E8%7D%7D%5Crightarrow%5Cfrac%7B2x%7D%7B3y%7D%5C%5C%5Csqrt%5B4%5D%7B%5Cfrac%7B81x%5E2y%5E%7B10%7D%7D%7B81x%5E6y%5E6%7D%7D%20%5Crightarrow%5Cfrac%7B3y%7D%7B2x%7D%5C%5C%5Csqrt%5B3%5D%7B%5Cfrac%7B64x%5E8y%5E7%7D%7B125x%5E2y%5E%7B10%7D%7D%7D%5Crightarrow%5Cfrac%7B4x%5E2%7D%7B5y%7D%5C%5C%5Csqrt%5B5%5D%7B%5Cfrac%7B243x%5E%7B17%7Dy%5E%7B16%7D%7D%7B32x%5E7y%5E%7B21%7D%7D%7D%5Crightarrow%5Cfrac%7B3x%5E2%7D%7B2y%7D%5C%5C%5Csqrt%5B5%5D%7B%5Cfrac%7B32x%5E%7B12%7Dy%5E%7B15%7D%7D%7B243x%5E7y%5E%7B10%7D%7D%7D%20%5Crightarrow%5Cfrac%7B2xy%7D%7B3%7D%5C%5C%5Csqrt%5B4%5D%7B%5Cfrac%7B16x%5E%7B10%7Dy%5E%7B9%7D%7D%7B256x%5E2y%5E%7B17%7D%7D%7D%5Crightarrow%5Cfrac%7Bx%7D%7B2y%7D)
Step-by-step explanation:
![\sqrt[4]{\frac{16x^6y^4}{81x^2y^8}} =\sqrt[4]{\frac{(2^4)(x^{6-2})(y^{4-8})}{(3^4)}} =\sqrt[4]{\frac{2^4x^4y^{-4}}{3^4}} =\frac{2xy^{-1}}{3}=\frac{2x}{3y}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7B%5Cfrac%7B16x%5E6y%5E4%7D%7B81x%5E2y%5E8%7D%7D%20%3D%5Csqrt%5B4%5D%7B%5Cfrac%7B%282%5E4%29%28x%5E%7B6-2%7D%29%28y%5E%7B4-8%7D%29%7D%7B%283%5E4%29%7D%7D%20%3D%5Csqrt%5B4%5D%7B%5Cfrac%7B2%5E4x%5E4y%5E%7B-4%7D%7D%7B3%5E4%7D%7D%20%3D%5Cfrac%7B2xy%5E%7B-1%7D%7D%7B3%7D%3D%5Cfrac%7B2x%7D%7B3y%7D)
![\sqrt[4]{\frac{81x^2y^{10}}{81x^6y^6}} =\sqrt[4]{\frac{(3^4)(x^{2-6})(y^{10-6})}{(2^4)}} =\sqrt[4]{\frac{3^4x^{-4}y^{4}}{2^4}} =\frac{3x^{-1}y^1}{3}=\frac{3y}{2x}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7B%5Cfrac%7B81x%5E2y%5E%7B10%7D%7D%7B81x%5E6y%5E6%7D%7D%20%3D%5Csqrt%5B4%5D%7B%5Cfrac%7B%283%5E4%29%28x%5E%7B2-6%7D%29%28y%5E%7B10-6%7D%29%7D%7B%282%5E4%29%7D%7D%20%3D%5Csqrt%5B4%5D%7B%5Cfrac%7B3%5E4x%5E%7B-4%7Dy%5E%7B4%7D%7D%7B2%5E4%7D%7D%20%3D%5Cfrac%7B3x%5E%7B-1%7Dy%5E1%7D%7B3%7D%3D%5Cfrac%7B3y%7D%7B2x%7D)
![\sqrt[3]{\frac{64x^8y^7}{125x^2y^{10}}} =\sqrt[3]{\frac{(4^3)(x^{8-2})(y^{7-10})}{(5^3)}} =\sqrt[3]{\frac{4^3x^6y^{-3}}{5^3}} =\frac{4x^2y^{-1}}{5}=\frac{4x^2}{5y}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B%5Cfrac%7B64x%5E8y%5E7%7D%7B125x%5E2y%5E%7B10%7D%7D%7D%20%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B%284%5E3%29%28x%5E%7B8-2%7D%29%28y%5E%7B7-10%7D%29%7D%7B%285%5E3%29%7D%7D%20%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B4%5E3x%5E6y%5E%7B-3%7D%7D%7B5%5E3%7D%7D%20%3D%5Cfrac%7B4x%5E2y%5E%7B-1%7D%7D%7B5%7D%3D%5Cfrac%7B4x%5E2%7D%7B5y%7D)
![\sqrt[5]{\frac{243x^{17}y^{16}}{32x^7y^{21}}} =\sqrt[5]{\frac{(3^5)(x^{17-7})(y^{16-21})}{(2^5)}} =\sqrt[5]{\frac{3^5x^{10}y^{-5}}{2^5}} =\frac{3x^2y^{-1}}{2}=\frac{3x^2}{2y}](https://tex.z-dn.net/?f=%5Csqrt%5B5%5D%7B%5Cfrac%7B243x%5E%7B17%7Dy%5E%7B16%7D%7D%7B32x%5E7y%5E%7B21%7D%7D%7D%20%3D%5Csqrt%5B5%5D%7B%5Cfrac%7B%283%5E5%29%28x%5E%7B17-7%7D%29%28y%5E%7B16-21%7D%29%7D%7B%282%5E5%29%7D%7D%20%3D%5Csqrt%5B5%5D%7B%5Cfrac%7B3%5E5x%5E%7B10%7Dy%5E%7B-5%7D%7D%7B2%5E5%7D%7D%20%3D%5Cfrac%7B3x%5E2y%5E%7B-1%7D%7D%7B2%7D%3D%5Cfrac%7B3x%5E2%7D%7B2y%7D)
![\sqrt[5]{\frac{32x^{12}y^{15}}{243x^7y^{10}}} =\sqrt[5]{\frac{(2^5)(x^{12-7})(y^{15-10})}{(3^5)}} =\sqrt[5]{\frac{2^5x^{5}y^{5}}{3^5}} =\frac{2x^1y^{1}}{3}=\frac{2xy}{3}](https://tex.z-dn.net/?f=%5Csqrt%5B5%5D%7B%5Cfrac%7B32x%5E%7B12%7Dy%5E%7B15%7D%7D%7B243x%5E7y%5E%7B10%7D%7D%7D%20%3D%5Csqrt%5B5%5D%7B%5Cfrac%7B%282%5E5%29%28x%5E%7B12-7%7D%29%28y%5E%7B15-10%7D%29%7D%7B%283%5E5%29%7D%7D%20%3D%5Csqrt%5B5%5D%7B%5Cfrac%7B2%5E5x%5E%7B5%7Dy%5E%7B5%7D%7D%7B3%5E5%7D%7D%20%3D%5Cfrac%7B2x%5E1y%5E%7B1%7D%7D%7B3%7D%3D%5Cfrac%7B2xy%7D%7B3%7D)
![\sqrt[4]{\frac{16x^{10}y^{9}}{256x^2y^{17}}} =\sqrt[4]{\frac{(2^4)(x^{10-2})(y^{9-17})}{(4^4)}} =\sqrt[4]{\frac{2^4x^{8}y^{-8}}{4^4}} =\frac{2x^{1}y^{-1}}{4}=\frac{x}{2y}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7B%5Cfrac%7B16x%5E%7B10%7Dy%5E%7B9%7D%7D%7B256x%5E2y%5E%7B17%7D%7D%7D%20%3D%5Csqrt%5B4%5D%7B%5Cfrac%7B%282%5E4%29%28x%5E%7B10-2%7D%29%28y%5E%7B9-17%7D%29%7D%7B%284%5E4%29%7D%7D%20%3D%5Csqrt%5B4%5D%7B%5Cfrac%7B2%5E4x%5E%7B8%7Dy%5E%7B-8%7D%7D%7B4%5E4%7D%7D%20%3D%5Cfrac%7B2x%5E%7B1%7Dy%5E%7B-1%7D%7D%7B4%7D%3D%5Cfrac%7Bx%7D%7B2y%7D)
Thus,
![\sqrt[4]{\frac{16x^6y^4}{81x^2y^8}}\rightarrow\frac{2x}{3y}\\\sqrt[4]{\frac{81x^2y^{10}}{81x^6y^6}} \rightarrow\frac{3y}{2x}\\\sqrt[3]{\frac{64x^8y^7}{125x^2y^{10}}}\rightarrow\frac{4x^2}{5y}\\\sqrt[5]{\frac{243x^{17}y^{16}}{32x^7y^{21}}}\rightarrow\frac{3x^2}{2y}\\\sqrt[5]{\frac{32x^{12}y^{15}}{243x^7y^{10}}} \rightarrow\frac{2xy}{3}\\\sqrt[4]{\frac{16x^{10}y^{9}}{256x^2y^{17}}}\rightarrow\frac{x}{2y}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7B%5Cfrac%7B16x%5E6y%5E4%7D%7B81x%5E2y%5E8%7D%7D%5Crightarrow%5Cfrac%7B2x%7D%7B3y%7D%5C%5C%5Csqrt%5B4%5D%7B%5Cfrac%7B81x%5E2y%5E%7B10%7D%7D%7B81x%5E6y%5E6%7D%7D%20%5Crightarrow%5Cfrac%7B3y%7D%7B2x%7D%5C%5C%5Csqrt%5B3%5D%7B%5Cfrac%7B64x%5E8y%5E7%7D%7B125x%5E2y%5E%7B10%7D%7D%7D%5Crightarrow%5Cfrac%7B4x%5E2%7D%7B5y%7D%5C%5C%5Csqrt%5B5%5D%7B%5Cfrac%7B243x%5E%7B17%7Dy%5E%7B16%7D%7D%7B32x%5E7y%5E%7B21%7D%7D%7D%5Crightarrow%5Cfrac%7B3x%5E2%7D%7B2y%7D%5C%5C%5Csqrt%5B5%5D%7B%5Cfrac%7B32x%5E%7B12%7Dy%5E%7B15%7D%7D%7B243x%5E7y%5E%7B10%7D%7D%7D%20%5Crightarrow%5Cfrac%7B2xy%7D%7B3%7D%5C%5C%5Csqrt%5B4%5D%7B%5Cfrac%7B16x%5E%7B10%7Dy%5E%7B9%7D%7D%7B256x%5E2y%5E%7B17%7D%7D%7D%5Crightarrow%5Cfrac%7Bx%7D%7B2y%7D)
Answer:
The rate at which the distance from the plane to the station is increasing is 331 miles per hour.
Step-by-step explanation:
We can find the rate at which the distance from the plane to the station is increasing by imaging the formation of a right triangle with the following dimensions:
a: is one side of the triangle = altitude of the plane = 3 miles
b: is the other side of the triangle = the distance traveled by the plane when it is 4 miles away from the station and an altitude of 3 miles
h: is the hypotenuse of the triangle = distance between the plane and the station = 4 miles
First, we need to find b:
(1)

Now, to find the rate we need to find the derivative of equation (1) with respect to time:
Since "da/dt" is constant (the altitude of the plane does not change with time), we have:
And knowing that the plane is moving at a speed of 500 mi/h (db/dt):
Therefore, the rate at which the distance from the plane to the station is increasing is 331 miles per hour.
I hope it helps you!
Answer:
It should be 1,628
.
Step-by-step explanation:
We see two shapes in the figure and those shapes are a rectangle and a circle. Let's find the area of the circle first. 25m won't help us find the area of the circle so let's pretend that 25m isn't there for now. 40m seems to be the diameter of the circle and to find the area of the circle we need to multiply the radius squared by Pi or 3.14. Half of 40 is 20 so we can multiply 20 squared by Pi to give us 1,256.63706. Do not round this number yet. As you can see this circle isn't a full circle. It's a semicircle. We can divide 1,256.63706 by 2 to find the area of a semicircle. You should get 628.31853 and round that to the nearest tenth and we get 628.32. Now let's keep that number in mind and find the area of the rectangle. Using a calculator we can easily multiply 40 and 25 to find the area of the rectangle, which is 1,000. Add 1,000 and 628.32 and our final results should be 1,628.32. I don't see this number in your options but option B is closely related to this answer. I hope this helps and if this answer is wrong then please give me some feedback on what I did wrong! Thank you!