(a) See the attached sketch. Each shell will have a radius <em>y</em> chosen from the interval [2, 4], a height of <em>x</em> = 2/<em>y</em>, and thickness ∆<em>y</em>. For infinitely many shells, we have ∆<em>y</em> converging to 0, and each super-thin shell contributes an infinitesimal volume of
2<em>π</em> (radius)² (height) = 4<em>πy</em>
Then the volume of the solid is obtained by integrating over [2, 4]:

(b) See the other attached sketch. (The text is a bit cluttered, but hopefully you'll understand what is drawn.) Each shell has a radius 9 - <em>x</em> (this is the distance between a given <em>x</em> value in the orange shaded region to the axis of revolution) and a height of 8 - <em>x</em> ³ (and this is the distance between the line <em>y</em> = 8 and the curve <em>y</em> = <em>x</em> ³). Then each shell has a volume of
2<em>π</em> (9 - <em>x</em>)² (8 - <em>x</em> ³) = 2<em>π</em> (648 - 144<em>x</em> + 8<em>x</em> ² - 81<em>x</em> ³ + 18<em>x</em> ⁴ - <em>x</em> ⁵)
so that the overall volume of the solid would be

I leave the details of integrating to you.
Answer:
D
Step-by-step explanation:
So we have the expression:

And we want to evaluate it when x=25, y=10, w=11, and z=18.
So, substitute these values for the variables:

First, subtract within the parentheses:

Square 15:

Now, multiply the terms on the right. 10 times 11 is 110:

Multiply:

Finally, add:

So, our answer is D.
And we're done!
Answer:
3x+8
Step-by-step explanation:
You cant solve these if they are not equating up to something hence incomplete question.
Answer:
3=-3
A radical is a mathematical symbol used to represent the root of a number. Here’s a quick example: the phrase “the square root of 81” is represented by the radical expression . (In the case of square roots, this expression is commonly shortened to —notice the absence of the small “2.”) When we find we are finding the non-negative number r such that , which is 9.
While square roots are probably the most common radical, we can also find the third root, the fifth root, the 10th root, or really any other nth root of a number. The nth root of a number can be represented by the radical expression.
Radicals and exponents are inverse operations. For example, we know that 92 = 81 and = 9. This property can be generalized to all radicals and exponents as well: for any number, x, raised to an exponent n to produce the number y, the nth root of y is x.