2x+8+ 120= 180
Combine like terms so 8+120=128
2x+8+ 120= 180
2x+128=180
-128=-128 ( to both side)
2x= 52 You divide now
2x/2= 52/2
x= 26
There is your answer :)
Answer:
5 length
Step-by-step explanation:
The diagram attached shows two equilateral triangles ABC & CDE. Since both squares share one side of the square BDFH of length 10, then their lengths will be 5 each. To obtain the largest square inscribed inside the original square BDFH, it makes sense to draw two other equilateral triangles AGH & EFG at the upper part of BDFH with length equal to 5.
So, the largest square that can be inscribe in the space outside the two equilateral triangles ABC & CDE and within BDFH is the square ACEG.
1+1 = 2 that is the answer
Answer:
Step-by-step explanation:
(ab + bc)(ab + bc)
Simplifying
(ab + bc)(ab + bc)
Multiply (ab + bc) * (ab + bc)
(ab(ab + bc) + bc(ab + bc))
((ab * ab + bc * ab) + bc(ab + bc))
Reorder the terms:
((ab2c + a2b2) + bc(ab + bc))
((ab2c + a2b2) + bc(ab + bc))
(ab2c + a2b2 + (ab * bc + bc * bc))
(ab2c + a2b2 + (ab2c + b2c2))
Reorder the terms:
(ab2c + ab2c + a2b2 + b2c2)
Combine like terms: ab2c + ab2c = 2ab2c
(2ab2c + a2b2 + b2c2)
Answer:
The answer is B
Step-by-step explanation:
I just did the Quick Check, the attachment is the answer, np.