Answer:
742.2 L
Explanation:
First we must find the number of moles of nitroglycerine reacted.
Molar mass of nitroglycerine= 227.0865 g/mol
Mass of nitroglycerine involved = 1×10^3 g
Number of moles of nitroglycerine= 1×10^3g/227.0865 g/mol
n= 4.40361 moles
T= 1985°C + 273= 2258K
P= 1.100atm
R= 0.082atmLmol-1K-1
Using the ideal gas equation:
PV= nRT
V= nRT/P
V= 4.40361× 0.082× 2258/1.1
V= 742 L
This is an example of the formation of Ionic compounds/bonds.
B. Carbon changes from one form to another, but the total amount of carbon remains the same.
<u>Answer:</u> The temperature of the solution in Kelvins is 422.356 K
<u>Explanation:</u>
Temperature is defined as the measure of coldness or hotness of a body. It also determines the average kinetic energy of the particles in a body.
This term is expressed in degree Celsius, degree Fahrenheit and Kelvins. All these units are interchangeable.
The S.I unit of temperature is Kelvins.
We are given:
Temperature of a solution = 
Conversion used to convert degree Celsius and Kelvins is:
![T(K)=[273.15+T(^oC)]](https://tex.z-dn.net/?f=T%28K%29%3D%5B273.15%2BT%28%5EoC%29%5D)

Hence, the temperature of the solution in Kelvins is 422.356 K
To determine the fraction of carbon in morphine, we need to know the chemical formula of morphine. From my readings, the chemical formula would be <span>C17H19NO<span>3. We assume we have 1 g of this substance. Using the molar mass, we can calculate for the moles of morphine. Then, from the formula we relate the amount of carbon in every mole of morphine. Lastly, we multiply the molar mass of carbon to obtain the mass of carbon. We calculate as follows:
1 g </span></span> <span>C17H19NO<span>3 ( 1 mol / 285.34 g ) ( 17 mol C / 1 mol </span></span> <span>C17H19NO3</span>) ( 12.01 g C / 1 mol C) = 0.7155 g C
Fraction of carbon = 0.7155 g C / 1 g <span>C17H19NO<span>3 = 0.7155</span></span>