1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alina [70]
3 years ago
9

11 points please help and give a small explanation I’ll mark brainliest

Mathematics
2 answers:
faltersainse [42]3 years ago
7 0

Answer:

what are we looking at

Step-by-step explanation:

dalvyx [7]3 years ago
4 0

Answer:

31.5 IS YOUR ANSWER

2in=7m. 3in=10 1/2. 4in=14m. 6in=21m. 8in=28. 9in=31.5

TO GET THE METERS ADD 31/2 WHICH IS HALF OF 7.

You might be interested in
Find the value of y in the diagram below.
Alja [10]

Answer:

The answer to your question is: y = 80°

Step-by-step explanation:

The sum of the internal angles in a polygon is = 180°(n - 2)

                                                                            = 180° (6 - 2)

                                                                           = 180(4)

                                                                            = 720°

                   y° + y° + 2(2y -20) + 2(2y -20) = 720

                   2y° + 4(2y -20) = 720

                   2y° + 8y -80 = 720

                   10y = 720 + 80

                   10 y = 800

                   y = 800 / 10

                   y = 80°

                 2y - 20 = 2(80) -20 = 160 -20 = 140

                 

                 80° + 80° * 140 + 140 + 140 + 140 = 720°

5 0
3 years ago
3. Anne is playing a math game. She chooses three
Anastaziya [24]

Answer: Im pretty sure the answer is  -14

Step-by-step explanation:

6 0
3 years ago
Label each statement as true or false regarding the zeros/roots of a quadratic function. The roots zeros of a quadratic function
ikadub [295]

Answer:

True, false, true, true.

Step-by-step explanation:

The roots zeros of a quadratic function are the same as the factors of the quadratic function. This is true because your roots are your factors—>(x-3) is a factor, x=3 is the root.

The roots zeros are the spots where the quadratic function intersects with the y-axis. No! Those are called y-intercepts!

The roots zeros are the spots where the quadratic function intersects with the x-axis. True. X-intercepts are your solutions. (x-3) graphed would the (3,0). That’s a solution.

There are not always two roots/zeros of a quadratic function,​ True. No solution would be when your quadratic doesn’t intersect the x-axis. One solution would be when your vertex would be on the x-axis. Two solutions is when your quadratic intersects the x-axis twice. Can there be infinite solutions? No. It’s either 0, 1, or 2 solutions.

6 0
3 years ago
Lim n→∞[(n + n² + n³ + .... nⁿ)/(1ⁿ + 2ⁿ + 3ⁿ +....nⁿ)]​
Schach [20]

Step-by-step explanation:

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} }

To, evaluate this limit, let we simplify numerator and denominator individually.

So, Consider Numerator

\rm :\longmapsto\:n +  {n}^{2} +  {n}^{3}  +  -  -  -  +  {n}^{n}

Clearly, if forms a Geometric progression with first term n and common ratio n respectively.

So, using Sum of n terms of GP, we get

\rm \:  =  \: \dfrac{n( {n}^{n}  - 1)}{n - 1}

\rm \:  =  \: \dfrac{ {n}^{n}  - 1}{1 -  \dfrac{1}{n} }

Now, Consider Denominator, we have

\rm :\longmapsto\: {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  -  +  {n}^{n}

can be rewritten as

\rm :\longmapsto\: {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  -  +  {(n - 1)}^{n} +   {n}^{n}

\rm \:  =  \:  {n}^{n}\bigg[1 +\bigg[{\dfrac{n - 1}{n}\bigg]}^{n} + \bigg[{\dfrac{n - 2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]

\rm \:  =  \:  {n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]

Now, Consider

\rm :\longmapsto\:\displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} }

So, on substituting the values evaluated above, we get

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{\dfrac{ {n}^{n}  - 1}{1 -  \dfrac{1}{n} }}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{ {n}^{n}  - 1}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{ {n}^{n}\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{1}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

Now, we know that,

\red{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to \infty} \bigg[1 + \dfrac{k}{x} \bigg]^{x}  =  {e}^{k}}}}

So, using this, we get

\rm \:  =  \: \dfrac{1}{1 +  {e}^{ - 1}  + {e}^{ - 2} +  -  -  -  -  \infty }

Now, in denominator, its an infinite GP series with common ratio 1/e ( < 1 ) and first term 1, so using sum to infinite GP series, we have

\rm \:  =  \: \dfrac{1}{\dfrac{1}{1 - \dfrac{1}{e} } }

\rm \:  =  \: \dfrac{1}{\dfrac{1}{ \dfrac{e - 1}{e} } }

\rm \:  =  \: \dfrac{1}{\dfrac{e}{e - 1} }

\rm \:  =  \: \dfrac{e - 1}{e}

\rm \:  =  \: 1 - \dfrac{1}{e}

Hence,

\boxed{\tt{ \displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} } =  \frac{e - 1}{e} = 1 -  \frac{1}{e}}}

3 0
3 years ago
Simplify (y x y^1/3)^3/2
jok3333 [9.3K]

Answer:

y^2

Step-by-step explanation:

(y x y^1/3)^3/2 would be clearer if written as

(y*y^(1/3))^(3/2).

Because y^a*y^b = y^(a + b), the quantity inside the first set of parentheses becomes

y^(4/3)

and if we apply the power (3/2) to this result, we get:

                                 4       3

(y^(4/3))^(3/2) = y^{ ----- * ----- ) = y^2

                                 3       2

3 0
3 years ago
Other questions:
  • Copy and complete the table. Sketch each rectangle and label it's dimensions.
    6·1 answer
  • Number 4 The two blank spots plz
    8·1 answer
  • Joe hypothesizes that the students of an elite school will score higher than the general population. He records a sample mean eq
    11·1 answer
  • Can someone answer this plz.
    13·1 answer
  • Sin theta= -4/5, tan theta &gt;0
    10·1 answer
  • Which number has a square root that is between 5 and 6?
    10·1 answer
  • the ratio of men to women working for a company is 5 to 7. If there are 140 men working for the company, what is the total numbe
    7·1 answer
  • PLEASE HELP ME! I will be giving BRAINLIEST to the correct answer. solve for x in the picture below.
    5·1 answer
  • HI can somebody outline it pls and tyy
    8·1 answer
  • 5
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!