Since in the above case, the beaker has two sections each with different radius and height, we will divide this problem into two parts.
We will calculate the volume of both the beakers separately and then add them up together to get the volume of the beaker.
Given, π = 3.14
Beaker 1:
Radius (r₁) = 2 cm
Height (h₁) = 3 cm
Volume (V₁) = π r₁² h₁ = 3.14 x 2² x 3 = 37.68 cm³
Beaker 2:
Radius (r₂) = 6 cm
Height (h₂) = 4 cm
Volume (V₂) = π r₂² h₂ = 3.14 x 6² x 4 = 452.16 cm³
Volume of beaker = V₁ + V₂ = 37.68 + 452.16 = 489.84 cm³
Answer:
Parallel
Step-by-step explanation:
In the slope-intercept form (y=mx +c), the coefficient of x tells us the slope of the line.
2x +8y= 56
Let's rewrite this equation into the slope-intercept form.
8y= -2x +56
Dividing both sides by 8:


Slope= -¼
y= -¼x -5
Slope= -¼
Since both lines have the same slope, they are parallel to each other.
Answer:
It means
also converges.
Step-by-step explanation:
The actual Series is::

The method we are going to use is comparison method:
According to comparison method, we have:

If series one converges, the second converges and if second diverges series, one diverges
Now Simplify the given series:
Taking"n^2"common from numerator and "n^6"from denominator.
![=\frac{n^2[7-\frac{4}{n}+\frac{3}{n^2}]}{n^6[\frac{12}{n^6}+2]} \\\\=\frac{[7-\frac{4}{n}+\frac{3}{n^2}]}{n^4[\frac{12}{n^6}+2]}](https://tex.z-dn.net/?f=%3D%5Cfrac%7Bn%5E2%5B7-%5Cfrac%7B4%7D%7Bn%7D%2B%5Cfrac%7B3%7D%7Bn%5E2%7D%5D%7D%7Bn%5E6%5B%5Cfrac%7B12%7D%7Bn%5E6%7D%2B2%5D%7D%20%5C%5C%5C%5C%3D%5Cfrac%7B%5B7-%5Cfrac%7B4%7D%7Bn%7D%2B%5Cfrac%7B3%7D%7Bn%5E2%7D%5D%7D%7Bn%5E4%5B%5Cfrac%7B12%7D%7Bn%5E6%7D%2B2%5D%7D)
![\sum_{n=1}^{inf}a_n=\sum_{n=1}^{inf}\frac{[7-\frac{4}{n}+\frac{3}{n^2}]}{[\frac{12}{n^6}+2]}\ \ \ \ \ \ \ \ \sum_{n=1}^{inf}b_n=\sum_{n=1}^{inf} \frac{1}{n^4}](https://tex.z-dn.net/?f=%5Csum_%7Bn%3D1%7D%5E%7Binf%7Da_n%3D%5Csum_%7Bn%3D1%7D%5E%7Binf%7D%5Cfrac%7B%5B7-%5Cfrac%7B4%7D%7Bn%7D%2B%5Cfrac%7B3%7D%7Bn%5E2%7D%5D%7D%7B%5B%5Cfrac%7B12%7D%7Bn%5E6%7D%2B2%5D%7D%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5Csum_%7Bn%3D1%7D%5E%7Binf%7Db_n%3D%5Csum_%7Bn%3D1%7D%5E%7Binf%7D%20%5Cfrac%7B1%7D%7Bn%5E4%7D)
Now:
![\sum_{n=1}^{inf}a_n=\sum_{n=1}^{inf}\frac{[7-\frac{4}{n}+\frac{3}{n^2}]}{[\frac{12}{n^6}+2]}\\ \\\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{[7-\frac{4}{n}+\frac{3}{n^2}]}{[\frac{12}{n^6}+2]}\\=\frac{7-\frac{4}{inf}+\frac{3}{inf}}{\frac{12}{inf}+2}\\\\=\frac{7}{2}](https://tex.z-dn.net/?f=%5Csum_%7Bn%3D1%7D%5E%7Binf%7Da_n%3D%5Csum_%7Bn%3D1%7D%5E%7Binf%7D%5Cfrac%7B%5B7-%5Cfrac%7B4%7D%7Bn%7D%2B%5Cfrac%7B3%7D%7Bn%5E2%7D%5D%7D%7B%5B%5Cfrac%7B12%7D%7Bn%5E6%7D%2B2%5D%7D%5C%5C%20%5C%5C%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20a_n%20%3D%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20%20%5Cfrac%7B%5B7-%5Cfrac%7B4%7D%7Bn%7D%2B%5Cfrac%7B3%7D%7Bn%5E2%7D%5D%7D%7B%5B%5Cfrac%7B12%7D%7Bn%5E6%7D%2B2%5D%7D%5C%5C%3D%5Cfrac%7B7-%5Cfrac%7B4%7D%7Binf%7D%2B%5Cfrac%7B3%7D%7Binf%7D%7D%7B%5Cfrac%7B12%7D%7Binf%7D%2B2%7D%5C%5C%5C%5C%3D%5Cfrac%7B7%7D%7B2%7D)
So a_n is finite, so it converges.
Similarly b_n converges according to p-test.
P-test:
General form:

if p>1 then series converges. In oue case we have:

p=4 >1, so b_n also converges.
According to comparison test if both series converges, the final series also converges.
It means
also converges.
Answer:
3/2 and 3/4 are terminating decimals
Step-by-step explanation:
Terminating decimals are those whose decimals end.
3/2 = 1 .5
2/3 = .6666repeating
3/4 = .75
5/7 =.714285repeating
How much paint can that can hold