I’m pretty sure the power is 4
1/6 because the first number that you roll doesn't matter so it depends on the 2nd roll, in which the probability of rolling a specific number is 1/6
Resposta:
Primer rectangle:
Amplada = 11
Longitud = 14
Segon rectangle:
Amplada = 12
Longitud = 15
Tercer rectangle:
Amplada = 13
Longitud = 16
Explicació pas a pas:
Donat que:
Primer rectangle:
Amplada = x
Longitud = x + 3
2n rectangle:
Augment de la dimensió d'1 cm respecte al primer rectangle;
Amplada = x + 1
Longitud = x + 4
3r rectangle:
Augment de la dimensió de 2 cm respecte al primer rectangle;
Amplada = x + 2
Longitud = x + 5
Suma dels tres perímetres del rectangle:
Perímetre d'un rectangle: 2 (l + O)
Primer rectangle:
2 (x + x + 3) = 2 (2x + 3) = 4x + 6
2n:
2 (x + 1 + x + 4) = 2 (2x + 5) = 4x + 10
3r:
2 (x + 2 + x + 5) = 2 (2x + 7) = 4x + 14
Suma de perímetres = 162
(4x + 6 + 4x + 10 + 4x + 14) = 162
12x + 30 = 162
12x = 162 - 30
12x = 130
x = 11
Per tant,
Primer rectangle:
Amplada = 11
Longitud = 11 + 3 = 14
2n rectangle:
Amplada = 11 + 1 = 12
Longitud = 11 + 4 = 15
3r rectangle:
Amplada = 11 + 2 = 13
Longitud = 11 + 5 = 16
Answer:
F' corresponds to point F
Step-by-step explanation:
When a point is the result of some transformation, we often designate that result using the base name of the original, with a prime (') added. In this case, we expect that F' is the transformation of point F.
__
<em>Comment on point naming</em>
Of course, points can be given any name you like. These conventions are adopted to aid in communication about transformations and correspondence between points. It would be unusual--even confusing, but not unreasonable, for point F' to correspond to point D, for example. In the case of certain transformations, point F' may actually <em>be</em> point D.