Here the line passes through (0,0) and (1,3).
First we need to find the slope , and for that we need to use the following formula

On substituting the values from the point, we will get

Now we will use slope intercept form, which is

Where m is the slope and b is the y intercept
And on substituting the values of x and y from the point (1,3) and slope, m = 3, we will get


b =0
Substituting the values of m and b in the slope intercept form, we will get

Answer:
dont even stress i gotchu
It's 50*, 46* and 84*.
Ratio of the second problem is 1:1 they both have a slope of 1 (which is probably why all three points are on the same line)
Step-by-step explanation:
Since we know that the straight/flat angle would equal 180* we will set the total of all those angles to 180*
We will add them up to find x. Once we find x we can find the value of each angle.
6x-10 + 4x + 6 + 7x + 14 = 180
We will combine like terms and solve for x.
17x+10 = 180
17x = 170
x = 10.
Since we have x = 10, we will plug it into x of each angle to get the value of each angle.
6(10) -10 = 60-10 which equals 50*
4(10) + 6 = 40+6 which equals 46*
7(10) + 14 = 70 + 14 which equals 84*.
f(-4) = 3(-4)^2 - 2(-4)
f(-4) = 3(16) + 8
f(-4) = 48 + 8
f(-4) = 56
I think the answer is 56 :)
Please give BRAINIEST :)
Answer:
Yes, because if we would connect the dots the graph would be a line. Hence a linear function graph.
Step-by-step explanation:
Answer:
Step-by-step explanation:
![CI=\left[\begin{array}{ccc}1&6&0\\0&1&2\\1&-1&3\end{array}\right] \left[\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}\right]](https://tex.z-dn.net/?f=CI%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%266%260%5C%5C0%261%262%5C%5C1%26-1%263%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%260%260%5C%5C0%261%260%5C%5C0%260%261%5Cend%7Barray%7D%5Cright%5D)
Subtract row 3 from row 1:
![\left[\begin{array}{ccc}1&6&0\\0&1&2\\0&7&-3\end{array}\right] \left[\begin{array}{ccc}1&0&0\\0&1&0\\1&0&-1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%266%260%5C%5C0%261%262%5C%5C0%267%26-3%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%260%260%5C%5C0%261%260%5C%5C1%260%26-1%5Cend%7Barray%7D%5Cright%5D)
Subtract row 3 from 7 times row 2:
![\left[\begin{array}{ccc}1&6&0\\0&1&2\\0&0&17\end{array}\right] \left[\begin{array}{ccc}1&0&0\\0&1&0\\-1&7&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%266%260%5C%5C0%261%262%5C%5C0%260%2617%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%260%260%5C%5C0%261%260%5C%5C-1%267%261%5Cend%7Barray%7D%5Cright%5D)
Divide row 3 by 17:
![\left[\begin{array}{ccc}1&6&0\\0&1&2\\0&0&1\end{array}\right] \left[\begin{array}{ccc}1&0&0\\0&1&0\\\frac{-1}{17} &\frac{7}{17} &\frac{1}{17} \end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%266%260%5C%5C0%261%262%5C%5C0%260%261%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%260%260%5C%5C0%261%260%5C%5C%5Cfrac%7B-1%7D%7B17%7D%20%26%5Cfrac%7B7%7D%7B17%7D%20%26%5Cfrac%7B1%7D%7B17%7D%20%5Cend%7Barray%7D%5Cright%5D)
Subtract 2 of row 3 from row 2:
![\left[\begin{array}{ccc}1&6&0\\0&1&0\\0&0&1\end{array}\right] \left[\begin{array}{ccc}1&0&0\\\frac{2}{17} &\frac{3}{17} &\frac{-2}{17} \\\frac{-1}{17} &\frac{7}{17} &\frac{1}{17} \end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%266%260%5C%5C0%261%260%5C%5C0%260%261%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%260%260%5C%5C%5Cfrac%7B2%7D%7B17%7D%20%26%5Cfrac%7B3%7D%7B17%7D%20%26%5Cfrac%7B-2%7D%7B17%7D%20%5C%5C%5Cfrac%7B-1%7D%7B17%7D%20%26%5Cfrac%7B7%7D%7B17%7D%20%26%5Cfrac%7B1%7D%7B17%7D%20%5Cend%7Barray%7D%5Cright%5D)
Subtract 6 of row 2 from row 1:
![\left[\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}\right] \left[\begin{array}{ccc}\frac{5}{17}&\frac{-18}{17}&\frac{12}{17}\\\frac{2}{17} &\frac{3}{17} &\frac{-2}{17} \\\frac{-1}{17} &\frac{7}{17} &\frac{1}{17} \end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%260%260%5C%5C0%261%260%5C%5C0%260%261%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%5Cfrac%7B5%7D%7B17%7D%26%5Cfrac%7B-18%7D%7B17%7D%26%5Cfrac%7B12%7D%7B17%7D%5C%5C%5Cfrac%7B2%7D%7B17%7D%20%26%5Cfrac%7B3%7D%7B17%7D%20%26%5Cfrac%7B-2%7D%7B17%7D%20%5C%5C%5Cfrac%7B-1%7D%7B17%7D%20%26%5Cfrac%7B7%7D%7B17%7D%20%26%5Cfrac%7B1%7D%7B17%7D%20%5Cend%7Barray%7D%5Cright%5D)
![C^{-1}=\frac{1}{17} \left[\begin{array}{ccc}5&-18&12\\2&3&-2\\-1&7&1\end{array}\right]](https://tex.z-dn.net/?f=C%5E%7B-1%7D%3D%5Cfrac%7B1%7D%7B17%7D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%26-18%2612%5C%5C2%263%26-2%5C%5C-1%267%261%5Cend%7Barray%7D%5Cright%5D)
![C^{-1}b=\frac{1}{17} \left[\begin{array}{ccc}5&-18&12\\2&3&-2\\-1&7&1\end{array}\right]\left[\begin{array}{c}10&1&3\end{array}\right]=\left[\begin{array}{c}4&1&0\end{array}\right]](https://tex.z-dn.net/?f=C%5E%7B-1%7Db%3D%5Cfrac%7B1%7D%7B17%7D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%26-18%2612%5C%5C2%263%26-2%5C%5C-1%267%261%5Cend%7Barray%7D%5Cright%5D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D10%261%263%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D4%261%260%5Cend%7Barray%7D%5Cright%5D)