f(x) = 2x
g(x) = x + 3
First let us find (fog)(x)
<span />
(fog)(x) = f(g(x)
= f(x+3)
= 2(x+3)
= 2x + 6
==> (fog)(x) = 2x + 6
Now let us find (gof)(x):
(gof)(x) = g(f(x)
= g(2x)
= 2x + 3
==> <span>(gof)(x) = 2x + 3</span>
Answer:
41 and 42
Step-by-step explanation:
Let the integers be x and x + 1
=> x + x + 1 = 85
=> 2x + 1 = 85
=> 2x = 84
=> x = 84/2
=> x = 41
Integers are :
41 and 42
Question
x+5/x+2 - x+1/x²+2x
Answer:
= (x² - 4x - 1)/[x (x+2)]
= (x² - 4x - 1)/[x² + 2x]
Step-by-step explanation:
x + 5/x + 2 - x + 1/x² + 2x
We factorise the second denominator to give us :
x + 5/x + 2 - x + 1/x(x + 2)
We find the L.C.M of both denominators which is x(x+2).
[x(x + 5)-(x + 1)] / (x (x + 2))
Expand the bracket
=[x² +5x - x -1] / [x (x + 2)]
=(x² - 4x - 1) / [x (x + 2)]
= (x² - 4x - 1)/ [x (x + 2)]
= (x² - 4x - 1) / [x² + 2x]