Let Ch and C denote the events of a student receiving an A in <u>ch</u>emistry or <u>c</u>alculus, respectively. We're given that
P(Ch) = 88/520
P(C) = 76/520
P(Ch and C) = 31/520
and we want to find P(Ch or C).
Using the inclusion/exclusion principle, we have
P(Ch or C) = P(Ch) + P(C) - P(Ch and C)
P(Ch or C) = 88/520 + 76/520 - 31/520
P(Ch or C) = 133/520
Answer:
5/6
Step-by-step explanation:
The ratio is:
45 / 54
Or, reduced:
5 / 6
Answer:
(x,y) = (-2, -1)
Step-by-step explanation:
We start off by substituting the value of "x".
5x+7y=-17
x=-
We then solve 5
y=-1 *Substitute the value of "y"
x= -
x=-2
This works.
Answer:
<h2>
12h</h2>
Step-by-step explanation:
each term has h^1
each term's coefficient is divisible by 12
12h( 3, h^5, 4h^4)
<h2>
So, the GCF is 12h </h2>
sin^2 x + 4 sinx +3 3 + sinx
-------------------------- = -------------------
cos^2 x 1 - sinx
factor the numerator
(sinx +3) (sinx+1) 3 + sinx
-------------------------- = -------------------
cos^2 x 1 - sinx
cos^2 = 1-sin^2x
(sinx +3) (sinx+1) 3 + sinx
-------------------------- = -------------------
1- sin^2x 1 - sinx
factor the denominator
(sinx +3) (sinx+1) 3 + sinx
-------------------------- = -------------------
(1-sinx ) (1+sinx) 1 - sinx
cancel the common term (1+sinx) and (sinx +1)
(sinx +3) 3 + sinx
-------------------------- = -------------------
(1-sinx ) 1 - sinx
reorder the first term
3+sinx 3 + sinx
-------------------------- = -------------------
(1-sinx ) 1 - sinx