Since
h(x) = g(f(x)), h'(x) = g'(f(x))×f'(x) (Chain rule).
Setting x=3 we get
h'(3) = g'(f(3))×f'(3)
Plugging in values we get
h'(3) = g'(4)×7
h'(3) = 2×7
h'(3) = 14
Answer:
3-a
Step-by-step explanation:
-3(-x+a) 7<5 when x=-1 ?
Answer:
The product of (-5·q·r) × (-2·p·q·r) × p·q is 10·q³·r²·p²
Step-by-step explanation:
The question relates to the rules of multiplication of variables and indices rules, and simplifification of an expression ;
The given expression is (-5·q·r) × (-2·p·q·r) × p·q
Therefore, we have;
(-5·q·r) × (-2·p·q·r) × p·q = (-5) × (-2) × q×q×q × r×r ×p×p = 10 × q³ × r² × p²
10 × q³ × r² × p² = 10·q³·r²·p²
∴ (-5·q·r) × (-2·p·q·r) × p·q = 10 × q³ × r² × p² = 10·q³·r²·p²
(-5·q·r) × (-2·p·q·r) × p·q = 10·q³·r²·p².
Answer:
Angle 1 and 2 are adjacent .