The expression is
5x + 5y
We are to prove that it is an odd integer when x and y are integers of opposite parity
First, we can assume
x = 2a (even)
y = 2b + 1(odd)
subsituting
10(a + b) + 5
5 [(2(a + b) + 1]
The term
2(a + b) + 1 is odd and the result of an odd number multiplied by an odd number is odd
Y = -(1/2)x + 4
y + (1/2)x =4
(1/2)x + y = 4
Multiply both sides by 2
2*(1/2)x + 2*y = 2*4
x + 2y = 8
Option B.
The median of the triangle is a segment that connects the vertex of the triangle to the midpoint of the side opposite to the vertex. <span>The altitude of the triangle is a segment that connects the vertex of the triangle to the side opposite to the triangle, which intersects that side at exactly 90°.</span>
Answer:
The option is C i.e 115°, 65°. proof is given below.
Step-by-step explanation:
Given:
ABCD is a quadrilateral.
m∠ A = 100 + 5x
m∠ B = 77 - 4y
m∠ C = 106 + 3x
m∠ D = 47 + 6y
To Prove:
ABCD is a parallelogram if opposing angles are congruent by finding the measures of angles.
m∠ A = m∠ C and
m∠ B = m∠ D
Proof:
ABCD is a quadrilateral and is a parallelogram if opposing angles are congruent.
∴ m∠ A = m∠ C
On substituting the given values we get
∴ 100 + 5x = 106 +3x
∴ 
m∠ A = 100 + 5x = 100 + 5 × 3 =100 + 15 = 115°
m∠ C = 106 + 3x = 106 + 3 ×3 =106 + 9 = 115°
∴ m∠ A = m∠ C = 115°
Similarly,
∴ m∠ B = m∠ D
77 - 4y = 47 + 6y
10y = 77 - 47
10y =30
∴
m∠ B = 77 - 4y =77 - 4 × 3 = 77 - 12 = 65°
m∠ D = 47 + 6y = 47 + 6 × 3 = 47 + 18 = 65°
∴ m∠ B = m∠ D = 65°
Therefore the option is C i.e 115°, 65°
Hiya.
It would require 4 blocks, so it’s would be C.