Answer:
0.18203 = 18.203% probability that exactly four complaints will be received during the next eight hours.
Step-by-step explanation:
We have the mean during a time-period, which means that the Poisson distribution is used to solve this question.
In a Poisson distribution, the probability that X represents the number of successes of a random variable is given by the following formula:

In which
x is the number of sucesses
e = 2.71828 is the Euler number
is the mean in the given interval.
A service center receives an average of 0.6 customer complaints per hour.
This means that
, in which h is the number of hours.
Determine the probability that exactly four complaints will be received during the next eight hours.
8 hours means that
.
The probability is P(X = 4).


0.18203 = 18.203% probability that exactly four complaints will be received during the next eight hours.