Answer: -35+24p
Step by step in picture below
The answer is 6.5t2+0.5t−5.5 , it’s simplified
L(1, -4)=(xL, yL)→xL=1, yL=-4
M(3, -2)=(xM, yM)→xM=3, yM=-2
Slope of side LM: m LM = (yM-yL) / (xM-xL)
m LM = ( -2 - (-4) ) / (3-1)
m LM = ( -2+4) / (2)
m LM = (2) / (2)
m LM = 1
The quadrilateral is the rectangle KLMN
The oposite sides are: LM with NK, and KL with NK
In a rectangle the opposite sides are parallel, and parallel lines have the same slope, then:
Slope of side LM = m LM = 1 = m NK = Slope of side NK
Slope of side NK = m NK = 1
Slope of side KL = m KL = m MN = Slope of side MN
The sides KL and LM (consecutive sides) are perpendicular (form an angle of 90°), then the product of their slopes is equal to -1:
(m KL) (m LM) = -1
Replacing m LM = 1
(m KL) (1) = -1
m KL = -1 = m MN
Answer:
Slope of side LM =1
Slope of side NK =1
Slope of side KL = -1
Slope of side MN = -1
Answer:
i am gessing to divide
Step-by-step explanation:
Answer:
∫((cos(x)*dx)/(√(1+sin(x)))) = 2√(1 + sin(x)) + c.
Step-by-step explanation:
In order to solve this question, it is important to notice that the derivative of the expression (1 + sin(x)) is present in the numerator, which is cos(x). This means that the question can be solved using the u-substitution method.
Let u = 1 + sin(x).
This means du/dx = cos(x). This implies dx = du/cos(x).
Substitute u = 1 + sin(x) and dx = du/cos(x) in the integral.
∫((cos(x)*dx)/(√(1+sin(x)))) = ∫((cos(x)*du)/(cos(x)*√(u))) = ∫((du)/(√(u)))
= ∫(u^(-1/2) * du). Integrating:
(u^(-1/2+1))/(-1/2+1) + c = (u^(1/2))/(1/2) + c = 2u^(1/2) + c = 2√u + c.
Put u = 1 + sin(x). Therefore, 2√(1 + sin(x)) + c. Therefore:
∫((cos(x)*dx)/(√(1+sin(x)))) = 2√(1 + sin(x)) + c!!!