Answer:
16 students can sit around a cluster of 7 square table.
Step-by-step explanation:
Consider the provided information.
We need to find how many students can sit around a cluster of 7 square table.
The tables in a classroom have square tops.
Four students can comfortably sit at each table with ample working space.
If we put the tables together in cluster it will look as shown in figure.
From the pattern we can observe that:
Number of square table in each cluster Total number of students
1 4
2 6
3 8
4 10
5 12
6 14
7 16
Hence, 16 students can sit around a cluster of 7 square table.
Answer:
The diagram for the question is missing, but I found an appropriate diagram fo the question:
Proof:
since OC = CD = 297mm Therefore, Δ OCD is an isoscless triangle
∠BCO = 45°
∠BOC = 45°
∠PCO = 45°
∠POC = 45°
∠DOP = 22.5°
∠PDO = 67.5°
∠ADO = 22.5°
∠AOD = 67.5°
Step-by-step explanation:
Given:
AB = CD = 297 mm
AD = BC = 210 mm
BCPO is a square
∴ BC = OP = CP = OB = 210mm
Solving for OC
OCB is a right anlgled triangle
using Pythagoras theorem
(Hypotenuse)² = Sum of square of the other two sides
(OC)² = (OB)² + (BC)²
(OC)² = 210² + 210²
(OC)² = 44100 + 44100
OC = √(88200
OC = 296.98 = 297
OC = 297mm
An isosceless tringle is a triangle that has two equal sides
Therefore for △OCD
CD = OC = 297mm; Hence, △OCD is an isosceless triangle.
The marked angles are not given in the diagram, but I am assuming it is all the angles other than the 90° angles
Since BC = OB = 210mm
∠BCO = ∠BOC
since sum of angles in a triangle = 180°
∠BCO + ∠BOC + 90 = 180
(∠BCO + ∠BOC) = 180 - 90
(∠BCO + ∠BOC) = 90°
since ∠BCO = ∠BOC
∴ ∠BCO = ∠BOC = 90/2 = 45
∴ ∠BCO = 45°
∠BOC = 45°
∠PCO = 45°
∠POC = 45°
For ΔOPD
Note that DP = 297 - 210 = 87mm
∠PDO + ∠DOP + 90 = 180
∠PDO + 22.5 + 90 = 180
∠PDO = 180 - 90 - 22.5
∠PDO = 67.5°
∠ADO = 22.5° (alternate to ∠DOP)
∠AOD = 67.5° (Alternate to ∠PDO)
Answer:
11
Step-by-step explanation:
w
Answer:
q=(1,5) t=(-2,3)r=(3,-1)s=(0,0)
Step-by-step explanation:
Answer:
C) Matched pairs
Step-by-step explanation:
Matched samples (also called matched pairs, paired samples or dependent samples) is a type of sampling that involves pairing participants that share every characteristic except for the one under study. The paired participants could be same individuals studied at different time such as:
- The study of same participants before and after an interference.
- The study of the same participants at two different interference.