Step 1 understand the problem make sure that you read the questions carefully several times Step 2 devise a plan Translate step 3 carry out the plan solve this is a system of linear equations with 3 variables
Answer:
There is a 0.73% probability that Ben receives a total of 2 phone calls in a week.
Step-by-step explanation:
In a Poisson distribution, the probability that X represents the number of successes of a random variable is given by the following formula:

In which
x is the number of sucesses
is the Euler number
is the mean in the given time interval.
The problem states that:
The number of phone calls that Actuary Ben receives each day has a Poisson distribution with mean 0.1 during each weekday and mean 0.2 each day during the weekend.
To find the mean during the time interval, we have to find the weighed mean of calls he receives per day.
There are 5 weekdays, with a mean of 0.1 calls per day.
The weekend is 2 days long, with a mean of 0.2 calls per day.
So:

If today is Monday, what is the probability that Ben receives a total of 2 phone calls in a week?
This is
. So:


There is a 0.73% probability that Ben receives a total of 2 phone calls in a week.
Answer:
I don't understand your question
Step-by-step explanation:
The answer is 16 yellow flowers
Answer:
Tn = 64-4n
Step-by-step explanation:
The nth term of an AP is expressed as:
Tn = a+(n-1)d
a is the common difference
n is the number of terms
d is the common difference
Given the 6th term a6 = 40
T6 = a+(6-1)d
T6 = a+5d
40 = a+5d ... (1)
Given the 20th term a20 = -16
T20 = a+(20-1)d
T20 = a+19d
-16 = a+19d... (2)
Solving both equation simultaneously
40 = a+5d
-16 = a+19d
Subtracting both equation
40-(-16) = 5d-19d
56 = -14d
d = 56/-14
d = -4
Substituting d = -4 into equation
a+5d = 40
a+5(-4) = 40
a-20 = 40
a = 20+40
a = 60
Given a = 60, d = -4, to get the nth term of the sequence:
Tn = a+(n-1)d
Tn = 60+(n-1)(-4)
Tn = 60+(-4n+4)
Tn = 60-4n+4
Tn = 64-4n