Since we want just the top 20% applicants and the data is normally distributed, we can use a z-score table to check the z-score that gives this percentage.
The z-score table usually shows the percentage for the values below a certain z-score, but since the whole distribution accounts to 100%, we can do the following.
We want a z* such that:

But, to use a value that is in a z-score table, we do the following:

So, we want a z-score that give a percentage of 80% for the value below it.
Using the z-score table or a z-score calculator, we can see that:
![\begin{gathered} P(zNow that we have the z-score cutoff, we can convert it to the score cutoff by using:[tex]z=\frac{x-\mu}{\sigma}\Longrightarrow x=z\sigma+\mu](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20P%28zNow%20that%20we%20have%20the%20z-score%20cutoff%2C%20we%20can%20convert%20it%20to%20the%20score%20cutoff%20by%20using%3A%5Btex%5Dz%3D%5Cfrac%7Bx-%5Cmu%7D%7B%5Csigma%7D%5CLongrightarrow%20x%3Dz%5Csigma%2B%5Cmu)
Where z is the z-score we have, μ is the mean and σ is the standard deviation, so:

so, the cutoff score is approximately 72.
Answers 425 is you multiply 50 by 8 you’d get 400 then add 25 the number 8 is the amount of times you can use the scale so it would be 16cm them you have one more cm left so you’d just cut the scale in half
U is a point in the line segment TV
TU + UV = TV
TU = 12
UV = 3
<h3>TV = 12+3 = 15 </h3>
<h2><u>TV = 15</u></h2>
Hope this will help...
Answer:
B
Step-by-step explanation:
To answer this, we need to see the to see to the fact that they are both in the same unit before we can take the ratio.
Firstly, we know that 1 foot = 12 inches. 9 feet would this be 9 * 12 = 108 inches.
Now we are told to get the ratio of length of car to length of model.
This means 108:6 = 18:1