Answer:
Your answer is absolutely correct
Step-by-step explanation:
The work would be as follows:
![\int _0^{\sqrt{\pi }}4x^3\cos \left(x^2\right)dx,\\\\\mathrm{Take\:the\:constant\:out}:\quad \int a\cdot f\left(x\right)dx=a\cdot \int f\left(x\right)dx\\=> 4\cdot \int _0^{\sqrt{\pi }}x^3\cos \left(x^2\right)dx\\\\\mathrm{Apply\:u-substitution:}\:u=x^2\\=> 4\cdot \int _0^{\pi }\frac{u\cos \left(u\right)}{2}du\\\\\mathrm{Apply\:Integration\:By\:Parts:}\:u=u,\:v'=\cos \left(u\right)\\=> 4\cdot \frac{1}{2}\left[u\sin \left(u\right)-\int \sin \left(u\right)du\right]^{\pi }_0\\\\](https://tex.z-dn.net/?f=%5Cint%20_0%5E%7B%5Csqrt%7B%5Cpi%20%7D%7D4x%5E3%5Ccos%20%5Cleft%28x%5E2%5Cright%29dx%2C%5C%5C%5C%5C%5Cmathrm%7BTake%5C%3Athe%5C%3Aconstant%5C%3Aout%7D%3A%5Cquad%20%5Cint%20a%5Ccdot%20f%5Cleft%28x%5Cright%29dx%3Da%5Ccdot%20%5Cint%20f%5Cleft%28x%5Cright%29dx%5C%5C%3D%3E%204%5Ccdot%20%5Cint%20_0%5E%7B%5Csqrt%7B%5Cpi%20%7D%7Dx%5E3%5Ccos%20%5Cleft%28x%5E2%5Cright%29dx%5C%5C%5C%5C%5Cmathrm%7BApply%5C%3Au-substitution%3A%7D%5C%3Au%3Dx%5E2%5C%5C%3D%3E%204%5Ccdot%20%5Cint%20_0%5E%7B%5Cpi%20%7D%5Cfrac%7Bu%5Ccos%20%5Cleft%28u%5Cright%29%7D%7B2%7Ddu%5C%5C%5C%5C%5Cmathrm%7BApply%5C%3AIntegration%5C%3ABy%5C%3AParts%3A%7D%5C%3Au%3Du%2C%5C%3Av%27%3D%5Ccos%20%5Cleft%28u%5Cright%29%5C%5C%3D%3E%204%5Ccdot%20%5Cfrac%7B1%7D%7B2%7D%5Cleft%5Bu%5Csin%20%5Cleft%28u%5Cright%29-%5Cint%20%5Csin%20%5Cleft%28u%5Cright%29du%5Cright%5D%5E%7B%5Cpi%20%7D_0%5C%5C%5C%5C)
![\int \sin \left(u\right)du=-\cos \left(u\right)\\=> 4\cdot \frac{1}{2}\left[u\sin \left(u\right)-\left(-\cos \left(u\right)\right)\right]^{\pi }_0\\\\\mathrm{Simplify\:}4\cdot \frac{1}{2}\left[u\sin \left(u\right)-\left(-\cos \left(u\right)\right)\right]^{\pi }_0:\quad 2\left[u\sin \left(u\right)+\cos \left(u\right)\right]^{\pi }_0\\\\\mathrm{Compute\:the\:boundaries}:\quad \left[u\sin \left(u\right)+\cos \left(u\right)\right]^{\pi }_0=-2\\=> 2(-2) = - 4](https://tex.z-dn.net/?f=%5Cint%20%5Csin%20%5Cleft%28u%5Cright%29du%3D-%5Ccos%20%5Cleft%28u%5Cright%29%5C%5C%3D%3E%204%5Ccdot%20%5Cfrac%7B1%7D%7B2%7D%5Cleft%5Bu%5Csin%20%5Cleft%28u%5Cright%29-%5Cleft%28-%5Ccos%20%5Cleft%28u%5Cright%29%5Cright%29%5Cright%5D%5E%7B%5Cpi%20%7D_0%5C%5C%5C%5C%5Cmathrm%7BSimplify%5C%3A%7D4%5Ccdot%20%5Cfrac%7B1%7D%7B2%7D%5Cleft%5Bu%5Csin%20%5Cleft%28u%5Cright%29-%5Cleft%28-%5Ccos%20%5Cleft%28u%5Cright%29%5Cright%29%5Cright%5D%5E%7B%5Cpi%20%7D_0%3A%5Cquad%202%5Cleft%5Bu%5Csin%20%5Cleft%28u%5Cright%29%2B%5Ccos%20%5Cleft%28u%5Cright%29%5Cright%5D%5E%7B%5Cpi%20%7D_0%5C%5C%5C%5C%5Cmathrm%7BCompute%5C%3Athe%5C%3Aboundaries%7D%3A%5Cquad%20%5Cleft%5Bu%5Csin%20%5Cleft%28u%5Cright%29%2B%5Ccos%20%5Cleft%28u%5Cright%29%5Cright%5D%5E%7B%5Cpi%20%7D_0%3D-2%5C%5C%3D%3E%202%28-2%29%20%3D%20-%204)
Hence proved that your solution is accurate.
Simplify the following:
(k^3 k^7)/3 - 5
Combine powers. (k^3 k^7)/3 = k^(7 + 3)/3:
k^(7 + 3)/3 - 5
7 + 3 = 10:
k^10/3 - 5
Put each term in k^10/3 - 5 over the common denominator 3: k^10/3 - 5 = k^10/3 - 15/3:
k^10/3 - 15/3
k^10/3 - 15/3 = (k^10 - 15)/3:
Answer: (k^10 - 15)/3
Answer:
1)Mean=920 $
2)Standard Error =S.E.=38
3)more likely to take place Event 25 studio apartments with a mean rent between $901 and $939
Step-by-step explanation:
Given:
True mean =920 $
S.D=190 $
No .of samples=25
To Find:
1)Mean of sample.
2)S.E
Solution:
Now , the mean for given sample distribution is given as 920 $
Hence Mean =920 $
Now calculating the Standard error
S.E.= S.D./Sqrt(n)
=190/Sqrt(25)
=190/5
=38
Therefore the Standard error is about 38 .
a) When n=1 then P(901≤X≤939)
So,
Z1=(901 -920)/190/Sqrt(1)]
Z1=-0.1
Z2=(939-920)/(190/Sqrt(1)]
Z2=0.1
So
Pr(-0.1≤Z≤0.1)=P(Z≤0.1)-P(Z≤-0.1)
=0.5398-0.4602
=0.0797 % chance of the sample distribution
b)n=25 then P(901≤X≤939)
Z1=(901-920)/S.E
Z1=-19/38=
Z1=-0.5
And Z2=0.5
So,
Pr(-0.5≤Z≤0.5)
=Pr(Z≤0.5)-Pr(Z≤-0.5)
=0.6915-0.3085
=0.3829
i.e 38.29 % chance of the sample distribution
Hence More likely to take place will be a sample of 25 studio apartments with a mean rent between $901 and $939.
0.3829>0.0797.
Because the probability of causing above event is more than the option A.
The answer would be: a > 2