Answer:
yp = -x/8
Step-by-step explanation:
Given the differential equation: y′′−8y′=7x+1,
The solution of the DE will be the sum of the complementary solution (yc) and the particular integral (yp)
First we will calculate the complimentary solution by solving the homogenous part of the DE first i.e by equating the DE to zero and solving to have;
y′′−8y′=0
The auxiliary equation will give us;
m²-8m = 0
m(m-8) = 0
m = 0 and m-8 = 0
m1 = 0 and m2 = 8
Since the value of the roots are real and different, the complementary solution (yc) will give us
yc = Ae^m1x + Be^m2x
yc = Ae^0+Be^8x
yc = A+Be^8x
To get yp we will differentiate yc twice and substitute the answers into the original DE
yp = Ax+B (using the method of undetermined coefficients
y'p = A
y"p = 0
Substituting the differentials into the general DE to get the constants we have;
0-8A = 7x+1
Comparing coefficients
-8A = 1
A = -1/8
B = 0
yp = -1/8x+0
yp = -x/8 (particular integral)
y = yc+yp
y = A+Be^8x-x/8
Answer:
$15
Step-by-step explanation:
let the hourly rate of pay for Ben = B
let the hourly rate of pay for Judy = J
Judy worked 4 hours and Ben worked 1 hour, their combined pay was $75;
4J + B = 75 ----- i
Judy worked 2 hours and Ben worked 6 hours, their combined pay was $120
2J + 6B = 120 --- ii
Now, we should solve the expression;
Multiply equation ii by 2 and equation i by 1;
4J + B = 75 ----- i x 1 ; 4J + B = 75 -- iii
2J + 6B = 120 --- ii x 2 ; 4J + 12B = 240 ---iv
Now,
equation iv - iii;
11B = 165
B = $15
So, solving for J;
4J + B = 75
4J + 15 = 75
4J = 75 - 15 = 60
J = $15
Answer:
1 and 3 are both perpendicular to segment NY
Step-by-step explanation:
1. Find the slope of line NY
slope of NY = 5-(-7)/-11-5 = - 3/4
Any line that is perpendicular to NY should have a slope of the inverse of negative slope of NY.
2.Find the slope of perpendicular lines
the inverse of negative slope of NY = - (-4/3) = 4/3
Answer: The real part is -6
The imaginary part is 2i
Step-by-step explanation: