Answer:
1
Step-by-step explanation:
you asked to type 1
Answer:
y = -1/10x^2 +2.5
Step-by-step explanation:
The distance from focus to directrix is twice the distance from focus to vertex. The focus-directrix distance is the difference in y-values:
-1 -4 = -5
So, the distance from focus to vertex is p = -5/2 = -2.5. This places the focus 2.5 units below the vertex. Then the vertex is at (h, k) = (0, -1) +(0, 2.5) = (0, 1.5).
The scale factor of the parabola is 1/(4p) = 1/(4(-2.5)) = -1/10. Then the equation of the parabola is ...
y = (1/(4p))(x -h) +k
y = -1/10x^2 +2.5
_____
You can check the graph by making sure the focus and directrix are the same distance from the parabola everywhere. Of course, if the vertex is halfway between focus and directrix, the distances are the same there. Another point that is usually easy to check is the point on the parabola that is even with the focus. It should be as far from the focus as it is from the directrix. In this parabola, the focus is 5 units from the directrix, and we see the points on the parabola at y=-1 are 5 units from the focus.
Answer:
x=1
Step-by-step explanation:
Hey there!
Mode is basically the number you see more than once,
Your answer would be:
because it appeared approximately
times in this data set
Good luck on your assignment and enjoy your day!
~
Answer:
(a) x = -2y
(c) 3x - 2y = 0
Step-by-step explanation:
You can tell if an equation is a direct variation equation if it can be written in the format y = kx.
Note that there is no addition and subtraction in this equation.
Let's put these equations in the form y = kx.
(a) x = -2y
- y = x/-2 → y = -1/2x
- This is equivalent to multiplying x by -1/2, so this is an example of direct variation.
(b) x + 2y = 12
- 2y = 12 - x
- y = 6 - 1/2x
- This is not in the form y = kx since we are adding 6 to -1/2x. Therefore, this is <u>NOT</u> an example of direct variation.
(c) 3x - 2y = 0
- -2y = -3x
- y = 3/2x
- This follows the format of y = kx, so it is an example of direct variation.
(d) 5x² + y = 0
- y = -5x²
- This is not in the form of y = kx, so it is <u>NOT</u> an example of direct variation.
(e) y = 0.3x + 1.6
- 1.6 is being added to 0.3x, so it is <u>NOT</u> an example of direct variation.
(f) y - 2 = x
- y = x + 2
- 2 is being added to x, so it is <u>NOT</u> an example of direct variation.
The following equations are examples of direct variation: