Answer:
Polynomial equation solver
x-3=3x-2
Standard form:
−2x − 1 = 0
Factorization:
−(2x + 1) = 0
Solutions:
x = −1
2
= -0.5
Answer:
The equation of the line with slope m = 2 and passing through the point (1, 1) will be:

Step-by-step explanation:
We know that the point-slope form of the line equation is

where
- m is the slope of the line
The formula
is termed as the point-slope form of the line equation because if we know one point on a certain line and the slope of that line, then we can easily get the line equation with this formula and, hence, determine all other points on the line.
For example, if we are given the point (1, 1) and slope m = 2
Then substituting the values m = 2 and the point (1, 2)




Therefore, the equation of the line with slope m = 2 and passing through the point (1, 1) will be:

Answer:
4 Can I have brainiest me trying to level up
Step-by-step explanation:
Let's make the parenthesis go bye
8-4
so it would be 4
<span>The
associative rule is a rule about when it's safe to move parentheses
around. You can remember that because the parentheses determine which
expressions you have to do first--which numbers can associate with each
other. It looks like this:
For addition: (a + b) + c = a + (b + c)
For multiplication: (ab)c = a(bc)
The commutative property is about which operations you can do backward
and forward. You can remember this by thinking of people commuting to
work: they go to work every morning, then they repeat the same operation
backward when they commute home. It looks like this:
For addition: a + b = b + a
For multiplication: ab = ba
Finally, the distributive property tells you what happens when you
distribute one operation against another kind in parentheses. It looks
like this:
a * (b + c) = ab + ac
In other words, the a is "distributed" over the b and c.
Of course, you can make these work together:
a * (b + (c + d))
= a * ((b + c) + d) (by the associative property)
= a * (d + (b + c)) (by the commutative property)
= ad + a (b + c) (by the distributive property)
= ad + ab + ac (by the distributive property again).
Hope this helps. </span>