<u>From the Pythagoras's Theorem, we know that:</u>
(Hypotenuse)² = (base)² + (perpendicular)²
<u>We are Given:</u>
We are given that the 2 legs (Base and Perpendicular) of the triangle are (m²-n² and 2mn)
<u>Solving for the Hypotenuse:</u>
replacing the variables in the Pythagoras's theorem, we get:
Hypotenuse² = (m²-n²)² + (2mn)²
Hypotenuse² = (m⁴ -2m²n² + n⁴) + (4m²n²) [<em>(a-b)² = a² - 2ab - b²</em>]
Hypotenuse² = m⁴ -2m²n² + n⁴ + 4m²n²
Hypotenuse² = m⁴ + 2m²n² + n⁴
Hypotenuse² = (m²)² + 2m²n² + (n²)²
Hypotenuse² = (m² + n²)² [<em>a² + 2ab + b² = (a+b)²</em>]
<em>taking the square root of both the sides</em>
Hypotenuse = m² + n²