In situations such as this one, why not look up the technical vocabulary, so that you can be sure of its meaning? I did that and found that my recollection of "inconsistent equations" was correct.
TRUE.
Answer:
£12
Step-by-step explanation:
£120 ×10/100
= £12.
That is the answer. Good luck
Answer:
Step-by-step explanation:
Given two upward facing parabolas with equations

The two intersect at


=
x=
area enclosed by them is given by
A=![\int_{-\sqrt{\frac{2}{5}}}^{\sqrt{\frac{2}{5}}}\left [ \left ( x^2+2\right )-\left ( 6x^2\right ) \right ]dx](https://tex.z-dn.net/?f=%5Cint_%7B-%5Csqrt%7B%5Cfrac%7B2%7D%7B5%7D%7D%7D%5E%7B%5Csqrt%7B%5Cfrac%7B2%7D%7B5%7D%7D%7D%5Cleft%20%5B%20%5Cleft%20%28%20x%5E2%2B2%5Cright%20%29-%5Cleft%20%28%206x%5E2%5Cright%20%29%20%5Cright%20%5Ddx)
A=
A=
A=
Answer:
The score that cuts off the bottom 2.5% is 48.93.
Step-by-step explanation:
When the distribution is normal, we use the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this question, we have that:

What is the score that cuts off the bottom 2.5%
This is X when Z has a pvalue of 0.025, so X when Z = -1.96.




The score that cuts off the bottom 2.5% is 48.93.