The function on the table is decreasing on the interval [-2, 0).
<h3>Over what interval is the function shown in the table decreasing?</h3>
A function is decreasing if, as x increases, f(x) decreases.
We can see that at x = -2, f(-2) = 12.
Then at x = 0, f(0) = 0.
And for the value after that:
x = 1, f(1) = 3
So now the function increases. Then we conclude that the function is decreasing on the interval [-2, 0), and after that the function increases.
If you want to learn more about decreasing functions:
brainly.com/question/1600302
#SPJ1
Answer:
Step-by-step explanation:
![\frac{4}{5} \div \bigg[ {\bigg( \frac{4}{5} \bigg)}^{7} .{\bigg( \frac{4}{5} \bigg)}^{0}\bigg] \\ \\ = \frac{4}{5} \div \bigg[ {\bigg( \frac{4}{5} \bigg)}^{7} .1\bigg] \\ \\ = \frac{4}{5} \div {\bigg( \frac{4}{5} \bigg)}^{7}\\ \\ = \frac{4}{5} \times {\bigg( \frac{5}{4}\bigg)}^{7} \\ \\ = {\bigg( \frac{5}{4}\bigg)}^{6}](https://tex.z-dn.net/?f=%20%20%5Cfrac%7B4%7D%7B5%7D%20%20%5Cdiv%20%20%5Cbigg%5B%20%20%7B%5Cbigg%28%20%5Cfrac%7B4%7D%7B5%7D%20%5Cbigg%29%7D%5E%7B7%7D%20.%7B%5Cbigg%28%20%5Cfrac%7B4%7D%7B5%7D%20%5Cbigg%29%7D%5E%7B0%7D%5Cbigg%5D%20%20%5C%5C%20%20%5C%5C%20%20%3D%20%20%5Cfrac%7B4%7D%7B5%7D%20%20%5Cdiv%20%20%5Cbigg%5B%20%20%7B%5Cbigg%28%20%5Cfrac%7B4%7D%7B5%7D%20%5Cbigg%29%7D%5E%7B7%7D%20.1%5Cbigg%5D%20%5C%5C%20%20%5C%5C%20%20%3D%20%20%5Cfrac%7B4%7D%7B5%7D%20%20%5Cdiv%20%20%20%20%7B%5Cbigg%28%20%5Cfrac%7B4%7D%7B5%7D%20%5Cbigg%29%7D%5E%7B7%7D%5C%5C%20%20%5C%5C%20%20%3D%20%20%5Cfrac%7B4%7D%7B5%7D%20%20%5Ctimes%20%20%20%20%7B%5Cbigg%28%20%5Cfrac%7B5%7D%7B4%7D%5Cbigg%29%7D%5E%7B7%7D%20%5C%5C%20%20%5C%5C%20%20%3D%20%7B%5Cbigg%28%20%5Cfrac%7B5%7D%7B4%7D%5Cbigg%29%7D%5E%7B6%7D)
About 190% because its almost two times the original number
I hope that answers your question
Step-by-step explanation:
first 5% =0.05
second 4.2 x 10 =42
then the correct answer is A