Answer:
Polygenic traits
Explanation:
Polygenic traits are traits that are controlled by more than one gene and the physical expression of these genes is significantly influenced by environmental conditions .Characteristics that show continuous variations are controlled by many genes.The genes that control them may be located near each other or even on separate chromosomes. They are often represented as a range of continuous variation because they are not discrete.
One cell produces two genetically identical daughter cells is both mitosis and meiosis.
Temperature is a quantitative measurement because it can be "measured". Quantitative data is where you record data that is measurable. Qualitative data is research collected from observations.
Answer:
C. H+ ions do not accumulate inside the thylakoid, so ATP synthase makes too little ATP.
Explanation:
Plant withering refers to the virtual death of plant cells due to lack of food. During the light-dependent reactions of photosynthesis, ATP needed for the synthesis of sugar (food) is created in the thylakoid membrane of the CHLOROPLAST of plant cells.
In the light-dependent reaction, hydrogen ions (H+) builds up/accumulate in the thylakoid lumen to create an electrochemical or proton gradient i.e. a difference in the concentration of H+ ions across the membrane. The hydrogen ions passes through a protein complex called ATP synthase, which forms ATP from ADP (by adding phosphate group), from the energy generated by the electrochemical gradient formed as a result of hydrogen in (H+) build up.
Hence, a plant that possess leaky membrane due to the cold temperature will likely wither because H+ ions are not able to accumulate inside the thylakoid causing a proton gradient, so ATP synthase makes too little ATP.
Answer:
it causes the depolarization of the target cell
Explanation:
Glutamate is an excitatory amino acid neurotransmitter that binds to specific receptors on the surface of target cells and thus causes its depolarization. During glutamate-mediated depolarization, the difference in charge inside and outside the cell is lost due to the entry of sodium and calcium positive ions into the postsynaptic cell (neuron) through specific ion channels. Moreover, glutamate binding also leads to the exit of potassium ions from the cell, thereby resulting in excitation. Through this mechanism, glutamate regulates many signaling pathways, such as those involved in memory, learning, emotions, cognition, motor control, etc.