Answer:
v = 7.67 m/s
Explanation:
The equation for apparent weight in the situation of weightlessness is given as:
Apparent Weight = m(g - a)
where,
Apparent Weight = 360 N
m = mass passenger = 61.2 kg
a = acceleration of roller coaster
g = acceleration due to gravity = 9.8 m/s²
Therefore,
360 N = (61.2 kg)(9.8 m/s² - a)
9.8 m/s² - a = 360 N/61.2 kg
a = 9.8 m/s² - 5.88 m/s²
a = 3.92 m/s²
Since, this acceleration is due to the change in direction of velocity on a circular path. Therefore, it can b represented by centripetal acceleration and its formula is given as:
a = v²/r
where,
a = centripetal acceleration = 3.92 m/s²
v = speed of roller coaster = ?
r = radius of circular rise = 15 m
Therefore,
3.92 m/s² = v²/15 m
v² = (3.92 m.s²)(15 m)
v = √(58.8 m²/s²)
<u>v = 7.67 m/s</u>
<span>False. Laser transmissions and radio waves are both forms of electromagnetic radiation. Both travel at approximately 3.00 x 10^8 meters per second. This is the case because wavelength and frequency are directly proportional to this value. Although laser light has a shorter wavelength than radio waves, it will travel at the same speed because the frequency will be greater.</span>
Answer:
Yes, the errors are likely to be relevant
Explanation:
A systematic error occurs as a result of the instrument used in carrying out and experiment. These errors are a result of small fluctuations in the measurement properties of the instrument. This happens when the instrument departs from non-ideal situations, for example as a result of physical expansion or change in temperature. For instance, let the resistance be measured to be up to 10 Ω ± 1 Ω
The error of the resistance, ε = 0.01Ω
Answer:
E. all of these
Explanation:
The designation of a point in space all the points that necessary
- reference point
- a direction
- fundamental units
- a direction
- motion
all are necessary to designate a point in space. Hence option E is correct.
For example in simple harmonic motion we need to specify all the above factors of the object in order to designate the position of the object.