First, you must know these formula d(e^f(x) = f'(x)e^x dx, e^a+b=e^a.e^b, and d(sinx) = cosxdx, secx = 1/ cosx
(secx)dy/dx=e^(y+sinx), implies <span>dy/dx=cosx .e^(y+sinx), and then
</span>dy=cosx .e^(y+sinx).dx, integdy=integ(cosx .e^(y+sinx).dx, equivalent of
integdy=integ(cosx .e^y.e^sinx)dx, integdy=e^y.integ.(cosx e^sinx)dx, but we know that d(e^sinx) =cosx e^sinx dx,
so integ.d(e^sinx) =integ.cosx e^sinx dx,
and e^sinx + C=integ.cosx e^sinxdx
finally, integdy=e^y.integ.(cosx e^sinx)dx=e^2. (e^sinx) +C
the answer is
y = e^2. (e^sinx) +C, you can check this answer to calculate dy/dx
I MASTURBATE ON WEBCAM FIND ME HERE sex-today.fun
My nick is - MarySoset5555
Answer:
9.182
Step-by-step explanation:
0.2 + 0.982 = 1.182
1.182 + 8 = 9.182
Answer:
4 inches
Step-by-step explanation:
First, we find how much fits into one inch of soil. We do this by multiplying 4 by 3. This equals 12. For every 12 cubic inches, the soil will be one inch deep. We divide 48 by 12 to see how many inches deep is it. This equals 4. The soil is 4 inches deep.