Planet earth is the only known region of the universe to host life and so the basic criteria for life is based on observations made here. For an entity to be considered a living organism it must contain DNA or some other means of storing genetic information. The second criteria is that it must have some way of extracting nutrients from its surroundings. The organism must be able to respond to environmental stimulus and last but not least it must be able to reproduce.
It makes the Earth livable for us creatures. We get protected from the Sun's harmful rays reaching to Earth, which makes Earth feel comfortable. Atmosphere also contains Oxygen and we rely on that everyday.
Long-term potentiation (LTP) is considered a cellular correlate of learning and memory. The presence of G protein-activated inwardly rectifying K(+) (GIRK) channels near excitatory synapses on dendritic spines suggests their possible involvement in synaptic plasticity. However, whether activity-dependent regulation of channels affects excitatory synaptic plasticity is unknown. In a companion article we have reported activity-dependent regulation of GIRK channel density in cultured hippocampal neurons that requires activity oF receptors (NMDAR) and protein phosphatase-1 (PP1) and takes place within 15 min. In this study, we performed whole-cell recordings of cultured hippocampal neurons and found that NMDAR activation increases basal GIRK current and GIRK channel activation mediated by adenosine A(1) receptors, but not GABA(B) receptors. Given the similar involvement of NMDARs, adenosine receptors, and PP1 in depotentiation of LTP caused by low-frequency stimulation that immediately follows LTP-inducing high-frequency stimulation, we wondered whether NMDAR-induced increase in GIRK channel surface density and current may contribute to the molecular mechanisms underlying this specific depotentiation. Remarkably, GIRK2 null mutation or GIRK channel blockade abolishes depotentiation of LTP, demonstrating that GIRK channels are critical for depotentiation, one form of excitatory synaptic plasticity.
Learn more about receptors here:
brainly.com/question/11985070
#SPJ4
Answer:
0.1% of energy
Explanation:
Energy flow: From the whole quantity of energy that reaches the earth's surface, autotroph organisms or producers absorb only 0.1 or 1%.
From the input of solar energy begins a unidirectional energy flow through all the organisms in the ecosystem, from autotrophs to heterotrophs, until it is dissipated in the environment.
At each trophic level occurs an energy transfer to the next, with only 10% being usable in each of them. This assessment is called "The 10% rule". As a general rule, only about 10% of the energy stored as biomass at one trophic level, per unit time, ends up as biomass at the next trophic level, in the same unit of time.
If wheat transferred 10% of the energy to mice, and of that 10% mice transferred 10% of the energy to hawk, then the percentage of energy transferred from the first trophic level to the third equals 0.1%.
10% (1st TL-2nd TL) / 10% (2nd TL - 3rd TL) = 0.1% (1stTL - 3rd TL)
<em>TL = Trophic level </em>