Answer:
x=-8.5.
Step-by-step explanation:
First, write an equation. Twice x (2x) plus 7 (+7) is the same as (=) negative ten (-10), or 2x+7=-10. To solve, first subtract 7 from both sides to get 2x=-17. Then, divide both sides by 2 (x=-8.5).
Number 8? I don't know which one you are talking about.
Answer:
59 to 66
Step-by-step explanation:
Mean test scores = u = 74.2
Standard Deviation =
= 9.6
According to the given data, following is the range of grades:
Grade A: 85% to 100%
Grade B: 55% to 85%
Grade C: 19% to 55%
Grade D: 6% to 19%
Grade F: 0% to 6%
So, the grade D will be given to the students from 6% to 19% scores. We can convert these percentages to numerical limits using the z scores. First we need to to identify the corresponding z scores of these limits.
6% to 19% in decimal form would be 0.06 to 0.19. Corresponding z score for 0.06 is -1.56 and that for 0.19 is -0.88 (From the z table)
The formula for z score is:

For z = -1.56, we get:

For z = -0.88, we get:

Therefore, a numerical limits for a D grade would be from 59 to 66 (rounded to nearest whole numbers)
Answer:
The probably genotype of individual #4 if 'Aa' and individual #6 is 'aa'.
Step-by-step explanation:
In a non sex-linked, dominant trait where both parents carry and show the trait and produce children that both have and don't have the trait, they would each have a genotype of 'Aa' which would produce a likelihood of 75% of children that carry the dominant traint and 25% that don't. Since the child of #1 and #2, #5, does not exhibit the trait, nor does the significant other (#6), then they both must have the 'aa' genotype. However, since #4 displays the dominant trait received from the parents, it is more likely they would have the 'Aa' genotype as by the punnet square of 'Aa' x 'Aa', 50% of their children would have the 'Aa' phenotype.
Answer:
A. 1
Step-by-step explanation:
I see only one red function line in the graph. this line represents the simple function y = 1, for x in the interval [-2,1].
the domain of a function defines the possible values for x, and the range of a function defined the possible values for y.
this function has only one possible value for y : 1
so, only A applies.