Answer:
$9$
Step-by-step explanation:
Given: Thea enters a positive integer into her calculator, then squares it, then presses the $\textcolor{blue}{\bf\circledast}$ key, then squares the result, then presses the $\textcolor{blue}{\bf\circledast}$ key again such that the calculator displays final number as $243$.
To find: number that Thea originally entered
Solution:
The final number is $243$.
As previously the $\textcolor{blue}{\bf\circledast}$ key was pressed,
the number before $243$ must be $324$.
As previously the number was squared, so the number before $324$ must be $18$.
As previously the $\textcolor{blue}{\bf\circledast}$ key was pressed,
the number before $18$ must be $81$
As previously the number was squared, so the number before $81$ must be $9$.
Answer:
Barb is correct she won by 10 points
Darius's=480
Barb=490
Answer:
0.09
Step-by-step explanation:
Divide 1.25 by 5 which is 0.25, and 2.04 by 6 which is 0.34
Then subtract the answers 0.34-0.25=0.09
Answer:
242 Hamburgers, 374 Cheeseburgers
Step-by-step explanation:
Step 1: 616/2-66=242 Hamburgers
Step 2: 616-242=374 Cheeseburgers
Step 3: Check Work 242+374=616
The weight of an object is the product of its mass and the acceleration of gravity.
If g[e] is the acceleration of gravity on earth, and g[M] the same for Mars and g[m] the same for the moon,
then m[M]=m[e]g[M]/g[e] and m[m]=m[e]g[m]/g[e] where m[ ] denotes mass. Note that weight=mg (measured in newtons) while mass is in kilograms.
If g[M]=g[e]/3 and g[m]=g[e]/6 approximately. Then the weight of an object on Mars will be about a third of what it is on earth, while on the moon it would be about a sixth of what it is on earth.