1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
shepuryov [24]
3 years ago
10

Write the equation of the line in fully simplified slope-intercept form?

Mathematics
2 answers:
igomit [66]3 years ago
8 0
Y=-2x+1

Good luck hope it helps :)
Vinvika [58]3 years ago
7 0

Answer:

y= -2x+1

Step-by-step explanation:

i hope this helps :)

You might be interested in
Which statement is true about the labeled function? F(x) < 0 over the Interval (-infinity, -4)
SpyIntel [72]

Answer:

4

Step-by-step explanation:

4 0
3 years ago
Which is bigger 3/11 or 3/12​
mr_godi [17]

Answer:

3/11

Step-by-step explanation:pls mark me brainliest

7 0
3 years ago
Read 2 more answers
Which expression is equivalent to (2^5)^-2
irinina [24]

<u><em>1/1024 is the correct answer.</em></u> First you had to apply exponent rule, and it gave us, \frac{1}{(2^5)^2}, or 2^5^*^2. Then you can also refine, and it gave us, 2^10, or \frac{1}{2^10}. And it gave us the answer is 2^1^0=2*2*2*2*2*2*2*2*2*2=1024, or 1/1024 is the correct answer. Hope this helps! And thank you for posting your question at here on brainly, and have a great day. -Charlie

4 0
3 years ago
The U.S. Bureau of Economic Statistics reports that the average annual salary in the metropolitan Boston area is $50,542. Suppos
xenn [34]

Answer:

(a) P(X > $57,000) = 0.0643

(b) P(X < $46,000) = 0.1423

(c) P(X > $40,000) = 0.0066

(d) P($45,000 < X < $54,000) = 0.6959

Step-by-step explanation:

We are given that U.S. Bureau of Economic Statistics reports that the average annual salary in the metropolitan Boston area is $50,542.

Suppose annual salaries in the metropolitan Boston area are normally distributed with a standard deviation of $4,246.

<em>Let X = annual salaries in the metropolitan Boston area</em>

SO, X ~ Normal(\mu=$50,542,\sigma^{2} = $4,246^{2})

The z-score probability distribution for normal distribution is given by;

                      Z  =  \frac{X-\mu}{\sigma }  ~ N(0,1)

where, \mu = average annual salary in the Boston area = $50,542

            \sigma = standard deviation = $4,246

(a) Probability that the worker’s annual salary is more than $57,000 is given by = P(X > $57,000)

    P(X > $57,000) = P( \frac{X-\mu}{\sigma } > \frac{57,000-50,542}{4,246 } ) = P(Z > 1.52) = 1 - P(Z \leq 1.52)

                                                                     = 1 - 0.93574 = <u>0.0643</u>

<em>The above probability is calculated by looking at the value of x = 1.52 in the z table which gave an area of 0.93574</em>.

(b) Probability that the worker’s annual salary is less than $46,000 is given by = P(X < $46,000)

    P(X < $46,000) = P( \frac{X-\mu}{\sigma } < \frac{46,000-50,542}{4,246 } ) = P(Z < -1.07) = 1 - P(Z \leq 1.07)

                                                                     = 1 - 0.85769 = <u>0.1423</u>

<em>The above probability is calculated by looking at the value of x = 1.07 in the z table which gave an area of 0.85769</em>.

(c) Probability that the worker’s annual salary is more than $40,000 is given by = P(X > $40,000)

    P(X > $40,000) = P( \frac{X-\mu}{\sigma } > \frac{40,000-50,542}{4,246 } ) = P(Z > -2.48) = P(Z < 2.48)

                                                                     = 1 - 0.99343 = <u>0.0066</u>

<em>The above probability is calculated by looking at the value of x = 2.48 in the z table which gave an area of 0.99343</em>.

(d) Probability that the worker’s annual salary is between $45,000 and $54,000 is given by = P($45,000 < X < $54,000)

    P($45,000 < X < $54,000) = P(X < $54,000) - P(X \leq $45,000)

    P(X < $54,000) = P( \frac{X-\mu}{\sigma } < \frac{54,000-50,542}{4,246 } ) = P(Z < 0.81) = 0.79103

    P(X \leq $45,000) = P( \frac{X-\mu}{\sigma } \leq \frac{45,000-50,542}{4,246 } ) = P(Z \leq -1.31) = 1 - P(Z < 1.31)

                                                                      = 1 - 0.90490 = 0.0951

<em>The above probability is calculated by looking at the value of x = 0.81 and x = 1.31 in the z table which gave an area of 0.79103 and 0.9049 respectively</em>.

Therefore, P($45,000 < X < $54,000) = 0.79103 - 0.0951 = <u>0.6959</u>

3 0
3 years ago
Tell if the Ratio is Part-to-part or part-to-whole<br><br> 4 apples to 3 oranges
Pepsi [2]

Answer: Part-to-part

Step-by-step explanation:

This is a part-to-part, because they show part of apples, and part of oranges. This ratio when set up is 4:3. If the ratio was part-to-whole, then the apples would be compared to the total amount of oranges and apples. The ratio for part-to-whole would be 4:7.

Hope this helps!

4 0
3 years ago
Other questions:
  • A movie theater needed 48 popcorn buckets. If each package has 9 buckets in it, how many packages will they need to buy?
    6·2 answers
  • What is the simplified expression for -3(2x-7)+2y+ 2(x+y)?
    8·1 answer
  • Can you come up with denominators that contain variables and aren't equal that would require you to change only one denominator
    10·1 answer
  • The forest was 600 acres in size 2/5 had been ravaged by bushfire how many acres were affected by bushfire?
    9·2 answers
  • On a recent 160 mile road trip Claires car used 7.75 gallons if gas how many gallons should she expect to use on a 150 mile Road
    5·1 answer
  • What is the relationship between a and b
    5·1 answer
  • Simplify the expression below as much as possible.<br> (8 + 9i) + (5 - 91) - (8 - 7i)
    9·1 answer
  • Ann worked 14 hours and earned a total of $108.50.<br> How much did she earn per hour?
    15·2 answers
  • Which of the following would be equivalent to 11 to the 8th power divided by 11 to the 3rd power?
    7·1 answer
  • Please solve this for me. You don't need a explanation. Also NO LINKS
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!