Answer:
Option (2)
Step-by-step explanation:
Step 1.

Step 2.
(cosA - cosB)² + (sinA - sinB)² = [cos(A - B) - 1]² + [sin(A - B) - 0]²
Step 3.
cos²A + cos²B - 2cosAcosB + sin²A + sin²B - 2sinAsinB = cos²(A - B) + 1 - 2cos(A - B) + sin²(A - B)
Step 4.
2 - 2cosAcosB - 2sinAsinB = 1 - 2cos(A - B) + 1
Step 5.
cosAcosB + sinAsinB = cos(A - B)
Therefore, Option (2) will be the answer.