Sum of two angles that are supplementary = 180°
Let the smaller angle be = x
![Let \: the \: smaller \: angle \: be \: = \: x](https://tex.z-dn.net/?f=Let%20%5C%3A%20%20the%20%20%5C%3A%20smaller%20%5C%3A%20%20angle%20%5C%3A%20%20be%20%5C%3A%20%20%3D%20%20%5C%3A%20x%20)
![then \: the \: larger \: angle \: = 6x + 33](https://tex.z-dn.net/?f=then%20%5C%3A%20the%20%5C%3A%20larger%20%5C%3A%20angle%20%5C%3A%20%20%3D%206x%20%2B%2033)
<h3>Their sum :</h3>
![x + 6x + 33 = 180](https://tex.z-dn.net/?f=x%20%2B%206x%20%2B%2033%20%3D%20180)
![7x + 33 = 180](https://tex.z-dn.net/?f=7x%20%2B%2033%20%3D%20180)
![7x = 180 - 33](https://tex.z-dn.net/?f=7x%20%3D%20180%20-%2033)
![7x = 147](https://tex.z-dn.net/?f=7x%20%3D%20147)
![x = \frac{147}{7}](https://tex.z-dn.net/?f=x%20%3D%20%20%5Cfrac%7B147%7D%7B7%7D%20)
![x = 21](https://tex.z-dn.net/?f=x%20%3D%2021)
Using this let us find the measures of the smaller angle and bigger angle .
![smaller \: angle \: = x = 21°](https://tex.z-dn.net/?f=smaller%20%5C%3A%20angle%20%5C%3A%20%20%3D%20x%20%3D%2021%C2%B0)
![larger \: angle \: = 6x + 33 = 6 \times 21 + 33 = 126 + 33 = 159°](https://tex.z-dn.net/?f=larger%20%5C%3A%20angle%20%5C%3A%20%20%3D%206x%20%2B%2033%20%3D%206%20%5Ctimes%2021%20%2B%2033%20%3D%20126%20%2B%2033%20%3D%20159%C2%B0)
∴ The measure of the two angles are = 21° and 159° .
Answer:
2 16/25 or 2.64 pints.
Step-by-step explanation:
Turn the 6.6 into a fraction for calculation purposes. you get 33/5. since 3/5 is blue paint and the question wants white paint, calculate 33/5 × 2/5. You should get 66/25 as the answer.
(0, 9) represents the y-intercept of the graph.
Since the slope is 1/3, this means that y will rise 1 for every 3 that x runs.
The points that can be used to make a line in this graph are (3, 10) and (6, 11).
2 miles: 1/2 hour
? mile: 1 hour
(2÷1/2)mi/h or B is your final answer. Hope it help!
Answer:
The graph of g is the graph of f shifted down 1 unit.
Step-by-step explanation:
Suppose you have a function y = f(x), you can do these following operations on the function:
Shift up a units: y = f(x) + a
Shift down a units: y = f(x) - a
Shift left a units: y = f(x + a)
Shift right a units: y = f(x - a)
In this problem, we have that:
g(x) = -1 + f(x) = f(x) - 1
So the graph of g is the graph of f shifted down 1 unit.