Answer:
0.08
Step-by-step explanation:
![{5}^{ - 2} \times \sqrt[3]{8} \\ \\ = {5}^{ - 2} \times \sqrt[3]{ {2}^{3} } \\ \\ = \frac{1}{ {5}^{2} } \times 2 \\ \\ = \frac{1}{25} \times 2 \\ \\ = \frac{2}{25} \\ \\ =0.08](https://tex.z-dn.net/?f=%20%7B5%7D%5E%7B%20-%202%7D%20%20%5Ctimes%20%20%5Csqrt%5B3%5D%7B8%7D%20%20%5C%5C%20%20%5C%5C%20%20%3D%20%20%7B5%7D%5E%7B%20-%202%7D%20%20%5Ctimes%20%20%5Csqrt%5B3%5D%7B%20%7B2%7D%5E%7B3%7D%20%7D%20%20%5C%5C%20%20%5C%5C%20%20%3D%20%20%5Cfrac%7B1%7D%7B%20%7B5%7D%5E%7B2%7D%20%7D%20%20%5Ctimes%202%20%5C%5C%20%20%5C%5C%20%20%20%3D%20%5Cfrac%7B1%7D%7B25%7D%20%20%5Ctimes%202%20%5C%5C%20%20%5C%5C%20%20%3D%20%20%5Cfrac%7B2%7D%7B25%7D%20%5C%5C%20%5C%5C%20%3D0.08)
9514 1404 393
Answer:
- 10,247.38 from continuous compounding
- 10,228.50 from semiannual compounding
- continuous compounding earns more
Step-by-step explanation:
The formula for the account balance from continuously compounded interest at annual rate r for t years is ...
A = Pe^(rt) . . . . P = principal invested
A = 8820e^(0.05·3) ≈ 10,247.38 . . . continuous compounding
__
The formula for the account balance from interest compounded semiannually at annual rate r for t years is ...
A = P(1 +r/2)^(2t)
A = 8820(1 +.05/2)^(2·3) ≈ 10,228.50 . . . semiannual compounding
Continuous compounding earns more.
Q,Z,X, and R
I think
I’m pretty sure that’s right but not 100% positive
Answer:
500 $
Step-by-step explanation:




x=500
<3
Red