1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ohaa [14]
3 years ago
13

What is sin 78° rounded to the nearest hundredth

Mathematics
2 answers:
e-lub [12.9K]3 years ago
7 0
Use a calculator. The sine of 78 degrees is .98.
sergejj [24]3 years ago
5 0
I have to write 20 characters... 0.98, 0 being a whole, 9 being a tenth, 9 being a hundredth.
You might be interested in
3b^2-2c^5+23+a^2-6c^5-2b^2-4a^2-11
Komok [63]

Answer:

=3a^

Step-by-step explanation:

5 0
3 years ago
Find h.<br> 10 cm<br> h = ✓ [?] cm<br> 8 cm
vaieri [72.5K]

Answer:

√86 cm

Step-by-step explanation:

radius² + h² = slope²            slope = 10       radius = 4

               h² = slope² - radius²

               h  =  √(slope² - radius²)

                   =  √(10² - 4²)

                   =  √ 86

                   =

8 0
3 years ago
(5+3i)(4+2i) <br><br> multiply
nika2105 [10]

Answer:

14+22i

Step-by-step explanation:

See Image below:)

5 0
3 years ago
Given AG bisects CD, IJ bisects CE, and BH bisects ED. Prove KE = FD.
OverLord2011 [107]

When a line is bisected, the line is divided into equal halves.

See below for the proof of \mathbf{KE \cong FD}

The given parameters are:

  • <em>AC bisects CD</em>
  • <em>IJ bisects CE</em>
  • <em>BH bisects ED</em>

<em />

By definition of segment bisection, we have:

  • \mathbf{CK \cong KE}
  • \mathbf{EF \cong FD}
  • \mathbf{CE \cong ED}

By definition of congruent segments, the above congruence equations become:

  • \mathbf{CK = KE}
  • \mathbf{EF = FD}
  • \mathbf{CE = ED}

By segment addition postulate, we have:

  • \mathbf{CE = CK + KE}
  • \mathbf{ED = EF + FD}

Substitute \mathbf{ED = EF + FD} in \mathbf{CE = ED}

\mathbf{CK + KE = EF + FD}

Substitute \mathbf{CK = KE} and \mathbf{EF = FD}

\mathbf{KE + KE = FD + FD}

Simplify

\mathbf{2KE = 2FD}

Apply division property of equality

\mathbf{KE = FD}

By definition of congruent segments

\mathbf{KE \cong FD}

Read more about proofs of congruent segments at:

brainly.com/question/11494126

6 0
3 years ago
Complete the equation describing how
Stolb23 [73]
Uh idek but i think the relationship is that x is plus 1 every time and y is plus 4 every time
3 0
3 years ago
Other questions:
  • ABCD is a parallelogram AD=10 units AB=8 units AC= 12 units ED= 4.5 unite what is the permitter of ABCD
    6·1 answer
  • A basketball player averages 22.5 points scored per game with a standard deviation of 6.2 points. In one game, the number of poi
    6·2 answers
  • Ava's bedroom rug is 2 3/4 feet long and 2 1/2 feet wide. What is the area of the rug
    5·1 answer
  • Always, sometimes, or never true
    6·2 answers
  • 85 is 40% of what number <br> A: 212.5 <br> B: 47.1 <br> C: 34 <br> D:45
    6·2 answers
  • (4,8), m=5 need a step by step answer please
    6·1 answer
  • Who's seen Haikyuu? Who's your favorite?<br><br>Mine: Kozume Kenma
    9·2 answers
  • I’m supposed to write the
    15·1 answer
  • 6-√8 divide √2-1
    15·1 answer
  • La distancia de la Tierra a Saturno es 5.95 x 108 y la distancia de la Tierra a Júpiter es 8.87 x 108. ¿Cuánto es la suma de las
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!