Answer:
attempts are required to find a matching pair if the digital fingerprint is 64 bits long.
attempts are required to find a matching pair if the digital fingerprint is 128 bits long.
Step-by-step explanation:
Each bit has two options. So
How many attempts are required to find a matching pair if the digital fingerprint is 64 bits long?
So for each of the 64 bits, we have the following number of options.
2 - 2 - 2 - 2 -... - 2
So, in all, there are

options.
So,
attempts are required to find a matching pair if the digital fingerprint is 64 bits long.
128 bits long?
Using the same logic as the first question.

So,
attempts are required to find a matching pair if the digital fingerprint is 128 bits long.
I hope this helps you
Area=4.pi.r^2
Area =4.3,14.11^2
Area =1519
Answer:
A. The lines stay parallel
Step-by-step explanation:
Rigid transformations do not change angle or line relationships. When the parallel lines are rotated they stay parallel. Reflecting them will keep them parallel. If this were not true, then figured with parallel lines like rectangles and squares would change shape when reflected.
Answer:
look im sorry but ur on your own
Step-by-step explanation:
Answer:
Step-by-step explanation:
Hello!
The variable of study is X: Temperature measured by a thermometer (ºC)
This variable has a distribution approximately normal with mean μ= 0ºC and standard deviation σ= 1.00ºC
To determine the value of X that separates the bottom 4% of the distribution from the top 96% you have to work using the standard normal distribution:
P(X≤x)= 0.04 ⇒ P(Z≤z)=0.04
First you have to use the Z tables to determine the value of Z that accumulates 0.04 of probability. It is the "bottom" 0.04, this means that the value will be in the left tail of the distribution and will be a negative value.
z= -1.75
Now using the formula of the distribution and the parameters of X you have to transform the Z-value into a value of X
z= (X-μ)/σ
z*σ = X-μ
(z*σ)+μ = X
X= (-1.75-0)/1= -1.75ºC
The value that separates the bottom 4% is -1.75ºC
I hope this helps!