Answer:
Heat is the transfer of energy. During energy transfer, the energy moves from the hotter object to the colder object. This means that the hotter object will cool down and the colder object will warm up. The energy transfer will continue until both objects are at the same temperature.
Explanation:
1. Double-Replacement reactions
2. Decomposition
3. Combustion
4. Syntesis
5. Single replacement
<h3>Further explanation</h3>
Given
Chemical equations
Required
Type of reaction
Solution
1. 2AgNO₃ + MgCl₂ ⇒ 2AgCl + Mg(NO₃)₂
Double-Replacement reactions. Happens if there is an ion exchange between two ion compounds in the reactant
2. 2KBr⇒2K +Br₂
Decomposition
Single compound breaks down in to 2 or more products
3. C₃H₈ + 5O₂ ⇒ 4H₂O + 3CO₂
Combustion
Hydrocarbon and Oxygen reaction and form water and carbon dioxide
4. NaO + H₂O ⇒ NaOH
Syntesis
2 or more reactants combine to form a single product
5. Zn + CuCl₂ ⇒ZnCl₂ + Cu
Single replacement
One element replaces another element from a compound
The formula of aspartame is <span>C14H18N2O5.
From the periodic table:
molecular mass of hydrogen = 1 grams
molecular mass of carbon = 12 grams
molecular mass of nitrogen = 14 grams
molecular mass of oxygen = 16 grams
This means that:
molar mass of aspartame = 14(12)+18(1)+2(14)+5(16) = 294 grams
Therefore, each 294 grams of aspartame contains 5(16) = 80 grams of oxygen. To know number of grams of oxygen in 23.6 grams of aspartame, simply use cross multiplication as follows:
mass of oxygen = (23.6x80) / 294 = 6.42 grams</span>
You would want to make sure that you have controlled the variables properly, and if you determine that you did then you would repeat the experiment to be sure of the results.
Answer B
<span>Potassium carbonate .
hope this helps!</span>