The question is incomplete. The complete question is :
Cylinders A and B are similar. The length of the cylinder A is 4 mm and the length of cylinder B is 6 mm. The volume of cylinder A is 20mm3. Calculate the volume of cylinder B.
Answer:
67.5 
Step-by-step explanation:
Given that :
Cylinder A and cylinder B are similar.
Let volume of cylinder A = 20 
We know the volume of a cylinder is given by V = 
where, r is the radius of the cylinder
h is the height of the cylinder
We have to find the scale factor.
The length scale factor is = 

Area scale factor 

∴ Volume scale factor 

Therefore, the volume of cylinder B is 
= 67.5 
You haven't provided the original coordinates or the figure, therefore, I cannot give an exact answer. However, I will help you with the concept.
For rotation 180° about the origin, the signs of both the x any y coordinates are changed.
<u>This can be modeled as follows:</u>
(x,y) ......> rotation 180° about the origin ........> (-x,-y)
<u>Examples:</u>
(1,2) .......> rotation 180° about the origin ........> (-1,-2)
(2,-19) ....> rotation 180° about the origin ........> (-2,19)
(-3,-8) .....> rotation 180° about the origin ........> (3,8)
(-5,7) ......> rotation 180° about the origin ........> (5,-7)
Based on the above, all you have to do to get the coordinates of C' is change the signs of both the x and y coordinates
Hope this helps :)
Answer:
The value of the standard error for the point estimate is of 0.0392.
Step-by-step explanation:
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean
and standard deviation
, the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean
and standard deviation
.
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
For a proportion p in a sample of size n, the sampling distribution of the sample proportion will be approximately normal with mean
and standard deviation 
In a randomly selected sample of 100 students at a University, 81 of them had access to a computer at home.
This means that 
Give the value of the standard error for the point estimate.
This is s. So

The value of the standard error for the point estimate is of 0.0392.
The exponent indicates how many times the number is used as a factor