The acceleration of the object will be 10 m/s²
Step-by-step explanation:
Direct variation is a relationship between two variables that can be expressed by an equation in which one variable is equal to a constant times the other
- If y varies directly with x, then y ∝ x
- y = k x, where k is the constant of variation
For a moving object, the force acting on the object varies directly with the object's acceleration.
Assume that the force is F and the acceleration is a
∵ F ∝ a
∴ F = k a
∵ F = 20 newtons
∵ a = 4 m/s²
- Substitute these values in the equation above to find k
∵ 20 = k (4)
∴ 20 = 4 k
- Divide both sides by 4
∴ k = 5
- Substitute the value of k in the equation
∴ F = 5 a ⇒ equation of variation
∵ F = 50 Newtons
∵ F = 5 a
∴ 50 = 5 a
- Divide both sides by 5
∴ 10 = a
∴ a = 10 m/s²
The acceleration of the object will be 10 m/s²
Learn more:
You can learn more about variation in brainly.com/question/10708697
#LearnwithBrainly
Answer:
1. 31/99 2. 215/999 3. 6704/9999
Answer: $208.95
Step-by-step explanation: $199 x .05= 9.95 + $199= $208.95
Answer:
2 hours and 29 minutes
Step-by-step explanation:
if you change 9 hours to minutes you get 540 plus 17 equals 557. if you turn 6 hours to minutes it's 360 plus 48 equals 408. 557 minus 408 equals 149 minutes. Now if you convert it to hours and minutes you need to divide by 60. So if you divide it you get 2 hours and 29 minutes. hope this helped! :)
Answer:

Step-by-step explanation:
Let's sketch graphs of functions f(x) and g(x) on one coordinate system (attachment).
Let's calculate the common points:
![x^2=\sqrt{x}\qquad\text{square of both sides}\\\\(x^2)^2=\left(\sqrt{x}\right)^2\\\\x^4=x\qquad\text{subtract}\ x\ \text{from both sides}\\\\x^4-x=0\qquad\text{distribute}\\\\x(x^3-1)=0\iff x=0\ \vee\ x^3-1=0\\\\x^3-1=0\qquad\text{add 1 to both sides}\\\\x^3=1\to x=\sqrt[3]1\to x=1](https://tex.z-dn.net/?f=x%5E2%3D%5Csqrt%7Bx%7D%5Cqquad%5Ctext%7Bsquare%20of%20both%20sides%7D%5C%5C%5C%5C%28x%5E2%29%5E2%3D%5Cleft%28%5Csqrt%7Bx%7D%5Cright%29%5E2%5C%5C%5C%5Cx%5E4%3Dx%5Cqquad%5Ctext%7Bsubtract%7D%5C%20x%5C%20%5Ctext%7Bfrom%20both%20sides%7D%5C%5C%5C%5Cx%5E4-x%3D0%5Cqquad%5Ctext%7Bdistribute%7D%5C%5C%5C%5Cx%28x%5E3-1%29%3D0%5Ciff%20x%3D0%5C%20%5Cvee%5C%20x%5E3-1%3D0%5C%5C%5C%5Cx%5E3-1%3D0%5Cqquad%5Ctext%7Badd%201%20to%20both%20sides%7D%5C%5C%5C%5Cx%5E3%3D1%5Cto%20x%3D%5Csqrt%5B3%5D1%5Cto%20x%3D1)
The area to be calculated is the area in the interval [0, 1] bounded by the graph g(x) and the axis x minus the area bounded by the graph f(x) and the axis x.
We have integrals:
![\int\limits_{0}^1(\sqrt{x})dx-\int\limits_{0}^1(x^2)dx=(*)\\\\\int(\sqrt{x})dx=\int\left(x^\frac{1}{2}\right)dx=\dfrac{2}{3}x^\frac{3}{2}=\dfrac{2x\sqrt{x}}{3}\\\\\int(x^2)dx=\dfrac{1}{3}x^3\\\\(*)=\left(\dfrac{2x\sqrt{x}}{2}\right]^1_0-\left(\dfrac{1}{3}x^3\right]^1_0=\dfrac{2(1)\sqrt{1}}{2}-\dfrac{2(0)\sqrt{0}}{2}-\left(\dfrac{1}{3}(1)^3-\dfrac{1}{3}(0)^3\right)\\\\=\dfrac{2(1)(1)}{2}-\dfrac{2(0)(0)}{2}-\dfrac{1}{3}(1)}+\dfrac{1}{3}(0)=2-0-\dfrac{1}{3}+0=1\dfrac{1}{3}](https://tex.z-dn.net/?f=%5Cint%5Climits_%7B0%7D%5E1%28%5Csqrt%7Bx%7D%29dx-%5Cint%5Climits_%7B0%7D%5E1%28x%5E2%29dx%3D%28%2A%29%5C%5C%5C%5C%5Cint%28%5Csqrt%7Bx%7D%29dx%3D%5Cint%5Cleft%28x%5E%5Cfrac%7B1%7D%7B2%7D%5Cright%29dx%3D%5Cdfrac%7B2%7D%7B3%7Dx%5E%5Cfrac%7B3%7D%7B2%7D%3D%5Cdfrac%7B2x%5Csqrt%7Bx%7D%7D%7B3%7D%5C%5C%5C%5C%5Cint%28x%5E2%29dx%3D%5Cdfrac%7B1%7D%7B3%7Dx%5E3%5C%5C%5C%5C%28%2A%29%3D%5Cleft%28%5Cdfrac%7B2x%5Csqrt%7Bx%7D%7D%7B2%7D%5Cright%5D%5E1_0-%5Cleft%28%5Cdfrac%7B1%7D%7B3%7Dx%5E3%5Cright%5D%5E1_0%3D%5Cdfrac%7B2%281%29%5Csqrt%7B1%7D%7D%7B2%7D-%5Cdfrac%7B2%280%29%5Csqrt%7B0%7D%7D%7B2%7D-%5Cleft%28%5Cdfrac%7B1%7D%7B3%7D%281%29%5E3-%5Cdfrac%7B1%7D%7B3%7D%280%29%5E3%5Cright%29%5C%5C%5C%5C%3D%5Cdfrac%7B2%281%29%281%29%7D%7B2%7D-%5Cdfrac%7B2%280%29%280%29%7D%7B2%7D-%5Cdfrac%7B1%7D%7B3%7D%281%29%7D%2B%5Cdfrac%7B1%7D%7B3%7D%280%29%3D2-0-%5Cdfrac%7B1%7D%7B3%7D%2B0%3D1%5Cdfrac%7B1%7D%7B3%7D)