Answer:
f(-3) = 16
Step-by-step explanation:
Given:
f(x) = 2x² + x + 1
Required:
f(-3)
Solution:
Substitute x = -3 into f(x) = 2x² + x + 1
f(-3) = 2(-3)² + (-3) + 1
f(-3) = 2*9 - 3 + 1
f(-3) = 18 - 3 + 1
f(-3) = 16
Answer:
260
Step-by-step explanation:
28+29(23)
=28+(29)(8)
=28+232
<h3>Answer:</h3>
Equation of the ellipse = 3x² + 5y² = 32
<h3>Step-by-step explanation:</h3>
<h2>Given:</h2>
- The centre of the ellipse is at the origin and the X axis is the major axis
- It passes through the points (-3, 1) and (2, -2)
<h2>To Find:</h2>
- The equation of the ellipse
<h2>Solution:</h2>
The equation of an ellipse is given by,

Given that the ellipse passes through the point (-3, 1)
Hence,

Cross multiplying we get,
- 9b² + a² = 1 ²× a²b²
- a²b² = 9b² + a²
Multiply by 4 on both sides,
- 4a²b² = 36b² + 4a²------(1)
Also by given the ellipse passes through the point (2, -2)
Substituting this,

Cross multiply,
- 4b² + 4a² = 1 × a²b²
- a²b² = 4b² + 4a²-------(2)
Subtracting equations 2 and 1,
- 3a²b² = 32b²
- 3a² = 32
- a² = 32/3----(3)
Substituting in 2,
- 32/3 × b² = 4b² + 4 × 32/3
- 32/3 b² = 4b² + 128/3
- 32/3 b² = (12b² + 128)/3
- 32b² = 12b² + 128
- 20b² = 128
- b² = 128/20 = 32/5
Substituting the values in the equation for ellipse,


Multiplying whole equation by 32 we get,
3x² + 5y² = 32
<h3>Hence equation of the ellipse is 3x² + 5y² = 32</h3>
I: y<2*x
II: y<8
III: x>2
a: (5,3):
I: 3<2*5
3<10 ?yes
II: 3<8 ?yes
III: 5>2 ?yes
This is a solution
b: (6,0):
I: 0<2*6
0<12 ?yes
II: 0<8 ?yes
III: 6>2 ?yes
This is a solution
c: (3,3):
I: 3<2*3
3<6 ?yes
II: 3<8 ?yes
III: 3>2 ?yes
This is a solution
d: (1,-4):
I: -4<2*1
-4<2 ?yes
II: -4<8 ?yes
III: 1>2 ?no
This is not a solution
e: (4,-2):
I: -2<2*4
-2<8 ?yes
II: -2<8 ?yes
III: 4>2 ?yes
This is a solution
f: (5,9):
I: 9<2*5
9<10 ?yes
II: 9<8 ?no
This is not a solution
so a,b,c,e are solutions and d,f not