Combine the terms. Note that: one positive and one negative sign results in a negative sign.
Simplify: 5 + (-4) = 5 - 4 = 1
1 + (-7) = 1 - 7 = -6
-6 + 2 = -4
-4 is your answer
~
Answer:
A (50)
Step-by-step explanation:
Mean is the total numbers added up divided by the # of numbers.
There are 6 numbers.
51 + 60 + 80 + 32 + 47 + 30 = 300
300/6 = 50
Therefore, the answer is A.
Answer:
x=-5/11, y=-9/11. (-5/11, -9/11).
Step-by-step explanation:
3x+2y=-3
y=4x+1
---------------
3x+2(4x+1)=-3
3x+8x+2=-3
11x=-3-2
11x=-5
x=-5/11
y=4(-5/11)+1
y=-20/11+11/11
y=-9/11
Answer:
-2
Step-by-step explanation:
if x=- 2 then f(x)=(-2-5)3(-2+2)=0
so x=-2 is correct
Answer:
The correct option is option (3) 4 ÷ 25.
Step-by-step explanation:
The expression in terms of <em>m</em> and <em>n</em> is:
![F(m,n)=[\frac{2m^{-1}n^{5}}{3m^{0}n^{4}}]^{2}](https://tex.z-dn.net/?f=F%28m%2Cn%29%3D%5B%5Cfrac%7B2m%5E%7B-1%7Dn%5E%7B5%7D%7D%7B3m%5E%7B0%7Dn%5E%7B4%7D%7D%5D%5E%7B2%7D)
Exponent rule of division:

Compute the value of the expression for <em>m</em> = -5 and <em>n</em> = 3 as follows:
![F(m,n)=[\frac{2m^{-1}n^{5}}{3m^{0}n^{4}}]^{2}](https://tex.z-dn.net/?f=F%28m%2Cn%29%3D%5B%5Cfrac%7B2m%5E%7B-1%7Dn%5E%7B5%7D%7D%7B3m%5E%7B0%7Dn%5E%7B4%7D%7D%5D%5E%7B2%7D)
![F(-5,3)=[\frac{2\csdot (-5)^{-1}\cdot (3)^{5}}{3\cdot (-5)^{0}\cdot (3)^{4}}]^{2}](https://tex.z-dn.net/?f=F%28-5%2C3%29%3D%5B%5Cfrac%7B2%5Ccsdot%20%28-5%29%5E%7B-1%7D%5Ccdot%20%283%29%5E%7B5%7D%7D%7B3%5Ccdot%20%28-5%29%5E%7B0%7D%5Ccdot%20%283%29%5E%7B4%7D%7D%5D%5E%7B2%7D)
![=\{\frac{2}{3}\times [(-5)^{-1-0}\times (3)^{5-4}}]\}^{2}\\\\=\{\frac{2}{3}\times \frac{-1}{5}\times 3\}^{2}\\\\=\{-\frac{2}{5}\}^{2}\\\\=\frac{4}{25}](https://tex.z-dn.net/?f=%3D%5C%7B%5Cfrac%7B2%7D%7B3%7D%5Ctimes%20%5B%28-5%29%5E%7B-1-0%7D%5Ctimes%20%283%29%5E%7B5-4%7D%7D%5D%5C%7D%5E%7B2%7D%5C%5C%5C%5C%3D%5C%7B%5Cfrac%7B2%7D%7B3%7D%5Ctimes%20%5Cfrac%7B-1%7D%7B5%7D%5Ctimes%203%5C%7D%5E%7B2%7D%5C%5C%5C%5C%3D%5C%7B-%5Cfrac%7B2%7D%7B5%7D%5C%7D%5E%7B2%7D%5C%5C%5C%5C%3D%5Cfrac%7B4%7D%7B25%7D)
Thus, the correct option is option (3) 4 ÷ 25.