1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alchen [17]
3 years ago
8

Please help! will mark brainliest!

Mathematics
1 answer:
laiz [17]3 years ago
8 0

Answer:

-12x²

General Formulas and Concepts:

<u>Pre-Algebra</u>

  • Distributive Property

<u>Algebra I</u>

  • Function Notation
  • Combining Like Terms
  • Factoring
  • Expanding by FOIL (First Outside Inside Last)

<u>Calculus</u>

  • Evaluating Limits
  • Definition of a Derivative: f'(x)= \lim_{h \to 0} \frac{f(x+h)-f(x)}{h}

Step-by-step explanation:

<u>Step 1: Define</u>

f(x) = 1 - 4x^3

<u>Step 2: Differentiate</u>

  1. Substitute [DOD]:                                                                                          f'(x)= \lim_{h \to 0} \frac{[1-4(x+h)^3]-(1-4x^3)}{h}
  2. Expand:                                                                                                           f'(x)= \lim_{h \to 0} \frac{[1-4(x^3+3hx^2+3h^2x+h^3)]-(1-4x^3)}{h}
  3. Distribute:                                                                                                        f'(x)= \lim_{h \to 0} \frac{1-4x^3-12hx^2-12h^2x-4h^3-1+4x^3}{h}
  4. Combine like terms:                                                                                       f'(x)= \lim_{h \to 0} \frac{-12h^2x-4h^3-12hx^2}{h}
  5. Factor:                                                                                                             f'(x)= \lim_{h \to 0} \frac{h(-12hx-4h^2-12x^2)}{h}
  6. Divide:                                                                                                             f'(x)= \lim_{h \to 0} -12hx-4h^2-12x^2
  7. Evaluate:                                                                                                         f'(x)= \-12x^2
You might be interested in
Write the equation in standard form. Identify the vertex, axis of symmetry, and direction of opening of the parabola. show work
liberstina [14]
Here ya go ❤️❤️❤️❤️❤️

5 0
3 years ago
Tan 3A in terms of tan​
Zanzabum

Here's the sum rule for the tangent function:

\tan(a+b)=\dfrac{\tan(a)+\tan(b)}{1-\tan(a)\tan(b)}

In the special case a=b, this becomes the double angle formula:

\tan(a+a)=\tan(2a)=\dfrac{\tan(a)+\tan(a)}{1-\tan(a)\tan(a)}=\dfrac{2\tan(a)}{1-\tan^2(a)}

In your case, you case use the sum rule once:

\tan(3a)=\tan(2a+a)=\dfrac{\tan(2a)+\tan(a)}{1-\tan(2a)\tan(a)}

And use it again, in the special case of the double angle:

\dfrac{\dfrac{2\tan(a)}{1-\tan^2(a)}+\tan(a)}{1-\dfrac{2\tan(a)}{1-\tan^2(a)}\tan(a)}

We can obvisouly simplify this expression a lot: let's deal with the numerator and denominator separately: the numerator is

\dfrac{2\tan(a)}{1-\tan^2(a)}+\tan(a) = \dfrac{2\tan(a)+\tan(a)-\tan^3(a)}{1-\tan^2(a)}

and the denominator is

1-\dfrac{2\tan(a)}{1-\tan^2(a)}\tan(a) = \dfrac{1-\tan^2(a)-2\tan^2(a)}{1-\tan^2(a)} = \dfrac{1-3\tan^2(a)}{1-\tan^2(a)}

So, the fraction is

\dfrac{2\tan(a)+\tan(a)-\tan^3(a)}{1-\tan^2(a)}\cdot \dfrac{1-\tan^2(a)}{1-3\tan^2(a)} = \dfrac{2\tan(a)+\tan(a)-\tan^3(a)}{1-3\tan^2(a)}

8 0
4 years ago
Which is true if figure defg is reflected across the x asic
Ulleksa [173]

Answer:

Explanation: If a figure reflected across the x-axis then the x-coordinate remains same but the sign of y-coordinate changes

Step-by-step explanation:

3 0
3 years ago
In parallelogram ABCD, AB= x, BC= x+y, CD= y-x and AD= 15. solve for x and y
erma4kov [3.2K]

Answer:

I think 29

I don't know if it's right

7 0
3 years ago
Find the 110 term of the sequence -7, 3, 13, 23, ...
Evgesh-ka [11]

First, find the nth term
To do this, find the term to term difference...
A
-7 and 3 = 10
3 and 13 = 10
13 and 23 = 10

As the difference is 10, we now write out the 10 times table

10, 20, 30, 40

The next step is to work out how to get from the sequence to the 10x table
B
-7 - 10 = -17
3 - 20 = -17
13 - 30 = -17
23 - 40 = -17

Now use the answer from each section in the general formula
x = An + B
This could also be written as ?n + ? 
Using our numbers, this becomes 10n - 17

Now use the formula to work out the 110th term
(10 x 110) - 17
1100 - 17 = 1083
7 0
3 years ago
Other questions:
  • The quotient of 5 plus d and 12 minus w in algebraic expression
    5·1 answer
  • What is a unit of volume with dimensions 1 x 1 x 1 unit
    13·2 answers
  • 1. Y varies inversely with x. If y = 9 when x = -5, find the value of x when y=-6.
    14·1 answer
  • Four fifths of a number increased by 4
    10·1 answer
  • When you want to change a cell color, which menu should you select?
    9·1 answer
  • Name two pairs of similar triangles and justify you answer
    11·1 answer
  • What is the set of four consecutive integers, the largest of which is -234?
    14·1 answer
  • Complete the tables of values.
    13·1 answer
  • If point Q does not lie on the x-axis or the y-
    14·1 answer
  • The equation y= x-3 describes how the variables x and y are related
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!