1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alchen [17]
3 years ago
8

Please help! will mark brainliest!

Mathematics
1 answer:
laiz [17]3 years ago
8 0

Answer:

-12x²

General Formulas and Concepts:

<u>Pre-Algebra</u>

  • Distributive Property

<u>Algebra I</u>

  • Function Notation
  • Combining Like Terms
  • Factoring
  • Expanding by FOIL (First Outside Inside Last)

<u>Calculus</u>

  • Evaluating Limits
  • Definition of a Derivative: f'(x)= \lim_{h \to 0} \frac{f(x+h)-f(x)}{h}

Step-by-step explanation:

<u>Step 1: Define</u>

f(x) = 1 - 4x^3

<u>Step 2: Differentiate</u>

  1. Substitute [DOD]:                                                                                          f'(x)= \lim_{h \to 0} \frac{[1-4(x+h)^3]-(1-4x^3)}{h}
  2. Expand:                                                                                                           f'(x)= \lim_{h \to 0} \frac{[1-4(x^3+3hx^2+3h^2x+h^3)]-(1-4x^3)}{h}
  3. Distribute:                                                                                                        f'(x)= \lim_{h \to 0} \frac{1-4x^3-12hx^2-12h^2x-4h^3-1+4x^3}{h}
  4. Combine like terms:                                                                                       f'(x)= \lim_{h \to 0} \frac{-12h^2x-4h^3-12hx^2}{h}
  5. Factor:                                                                                                             f'(x)= \lim_{h \to 0} \frac{h(-12hx-4h^2-12x^2)}{h}
  6. Divide:                                                                                                             f'(x)= \lim_{h \to 0} -12hx-4h^2-12x^2
  7. Evaluate:                                                                                                         f'(x)= \-12x^2
You might be interested in
Please I will mark brainlist list
Mazyrski [523]
1/64. Because 2 raised to the -6 power is 1/64 and its in fraction form. It wouldn’t be -12 because you do Not multiply 2 and -6 together. It wouldn’t be -64 or 1/16 either.
5 0
3 years ago
Determine the standard form of the equation of the line that passes through (-2, 0) and (-8,5)
Naya [18.7K]

Answer:

-5x-6y=10      ←   in standard form

Step-by-step explanation:

The equation of a line in  standard form  is.

Ax+By=C

were

  • A is a positive integer and
  • B, C are integers

As the equation in  point-slope form

y-y_1=m\left(x-x_1\right)

where m is the slope and \left(x_1,\:y_1\right)  is a point on the line.  

as

\mathrm{Slope\:between\:two\:points}:\quad \mathrm{Slope}=\frac{y_2-y_1}{x_2-x_1}

\left(x_1,\:y_1\right)=\left(-2,\:0\right),\:\left(x_2,\:y_2\right)=\left(-8,\:5\right)

m=\frac{5-0}{-8-\left(-2\right)}

m=-\frac{5}{6}

using   m=-\frac{5}{6}  and \left(x_1,\:y_1\right)=\left(-2,\:0\right)  then

y-0=-\frac{5}{6}\left(x-\left(-2\right)\right)

-\frac{5}{6}\left(x-\left(-2\right)\right)=y-0

6\left(-\frac{5}{6}\left(x-\left(-2\right)\right)\right)=6y

-5\left(x+2\right)=6y

-5x-10=6y

-5x-6y=10      ←   in standard form

8 0
3 years ago
What is the domain and range of the relation {(2,1), (3,3), (4,5)}?
Hitman42 [59]
The answer would be B because (x,y) x is the domain and y is the range

Hope this helps

Have a great day/night
4 0
3 years ago
What rule changes the input numbers to output numbers?
Novay_Z [31]
The answer is B.
B
is the answer because:
2(1)-8= -6
2(2)-8= -4
2(3)-8=-2
2(4)-8=0


3 0
3 years ago
A farmer sells 9.2 kilograms of apples and pears at the farmer's market.
Nataly [62]

Answer:

3.68

Step-by-step explanation:

If 3/5 of the weight is apples, then 2/5 of the weight is pears.

2/5 * 9.2 = 3.68

4 0
3 years ago
Read 2 more answers
Other questions:
  • Which statement about the quadratic equation below is true?
    6·1 answer
  • Can someone explain how to do number 35
    9·1 answer
  • Josh and his friends bought vanilla wafers for $4 per packet and chocolate wafers for $1 per packet at a carnival. They spent a
    8·1 answer
  • Mr. mole left his burrow
    5·1 answer
  • 75 days is how many months?<br><br>​
    9·1 answer
  • If there are 23 students in your class, and your teacher is pulling random names from a hat, what is the probability that your n
    5·2 answers
  • AC =<br> Round your answer to the nearest hundredth.<br> ?<br> С<br> 70°<br> 4<br> B
    15·2 answers
  • Whats the opposite of jumping down 10 steps
    15·2 answers
  • For each expression, select all equivalent expressions from the list.
    15·1 answer
  • Help math<br><br> This is so confusing!
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!