Answer: B
Step-by-step explanation:
First, you have to find how many friends are playing. This can be found in the equation 5-3. Now you multiply by six to find the cost. If you chose C, that would be incorrect, because the () you would mltilply first (30) and then subtract 3 (27). You can also think of it as finding the cost of how much all of them want to play by using the distributive property, leaving you with 30 - 18, and subtract from there to get 12.
Answer:
(a). 72.9%.
(b). 13.6 hr.
Step-by-step explanation:
So, we are given the following data or parameters or information which is going to assist us in solving this question/problem;
=> "A welder produces 7 welded assemblies during the first day on a new job, and the seventh assembly takes 45 minutes (unit time). "
=> The worker produces 10 welded assemblies on the second day, and the 10th assembly on the second day takes 30 minutes"
So, we will be making use of the Crawford learning curve model.
T(7) + 10 = T (17) = 30 min.
T(7) = T1(7)^b = 45.
T(17 ) = T1(17)^b = 30.
(T1) = 45/7^b = 30/17^b.
45/30 = 7^b/17^b = (7/17)^b.
1.5 = (0.41177)^b.
ln 1.5 = b ln 0.41177.
0.40547 = -0.8873 b.
b = - 0.45696.
=> 2^ -0.45696 = 0.7285.
= 72.9%.
(b). T1= 45/7^ - 045696 = 109.5 hr.
V(TT)(17) = 109.5 {(17.51^ - 0.45696 – 0.51^ - 0.45696) / (1 - 0.45696)} .
V(TT) (17) = 109.5 {(4.7317 - 0.6863) / 0.54304} .
= 815.7 min .
= 13.595 hr.
Answer:
see in pdf the solution is there.
Step-by-step explanation: