Answer:
the answer would be C
Step-by-step explanation:
Answer:
good u?
Step-by-step explanation:
Answer:
diameter = m - c
Step-by-step explanation:
In ΔABC, let ∠C be the right angle. The length of the tangents from point C to the inscribed circle are "r", the radius. Then the lengths of tangents from point A are (b-r), and those from point B have length (a-r).
The sum of the lengths of the tangents from points A and B on side "c" is ...
(b-r) +(a-r) = c
(a+b) -2r = c
Now, the problem statement defines the sum of side lengths as ...
a+b = m
and, of course, the diameter (d) is 2r, so we can rewrite the above equation as ...
m -d = c
m - c = d . . . . add d-c
The diameter of the inscribed circle is the difference between the sum of leg lengths and the hypotenuse.
So I'm going to assume that this question is asking for <u>non extraneous solutions</u>, or solutions that are found in the equation <em>and</em> are valid solutions when plugged back into the equation. So firstly, subtract 2 on both sides of the equation:

Next, square both sides:

Next, subtract x and add 2 to both sides of the equation:

Now we are going to be factoring by grouping to find the solution(s). Firstly, what two terms have a product of 6x^2 and a sum of -5x? That would be -3x and -2x. Replace -5x with -2x - 3x:

Next, factor x^2 - 2x and -3x + 6 separately. Make sure that they have the same quantity on the inside of the parentheses:

Now you can rewrite the equation as 
Now, apply the Zero Product Property and solve for x as such:

Now, it may appear that the answer is C, however we need to plug the numbers back into the original equation to see if they are true as such:

Since both solutions hold true when x = 2 and x = 3, <u>your answer is C. x = 2 or x = 3.</u>