Given the following function:
![\text{ f(x) = }\sqrt[]{-x\text{ -2}}\text{ + 2}](https://tex.z-dn.net/?f=%5Ctext%7B%20f%28x%29%20%3D%20%7D%5Csqrt%5B%5D%7B-x%5Ctext%7B%20-2%7D%7D%5Ctext%7B%20%2B%202%7D)
y = f(x)
Therefore, let's complete the data table by substituting each x-values to be able to get the respective y-values,
We get,
At x = -2,
![\text{ y = f(x) = }\sqrt[]{-x-2}\text{ + 2}](https://tex.z-dn.net/?f=%5Ctext%7B%20y%20%3D%20f%28x%29%20%3D%20%7D%5Csqrt%5B%5D%7B-x-2%7D%5Ctext%7B%20%2B%202%7D)
![\text{f(-2) = }\sqrt[]{-(-2)-2}\text{ + 2}](https://tex.z-dn.net/?f=%5Ctext%7Bf%28-2%29%20%3D%20%7D%5Csqrt%5B%5D%7B-%28-2%29-2%7D%5Ctext%7B%20%2B%202%7D)
![\text{ = }\sqrt[]{2\text{ - 2}}\text{ + 2}](https://tex.z-dn.net/?f=%5Ctext%7B%20%3D%20%7D%5Csqrt%5B%5D%7B2%5Ctext%7B%20-%202%7D%7D%5Ctext%7B%20%2B%202%7D)
![\text{ = }\sqrt[]{0}\text{ + 2}](https://tex.z-dn.net/?f=%5Ctext%7B%20%3D%20%7D%5Csqrt%5B%5D%7B0%7D%5Ctext%7B%20%2B%202%7D)

Therefore, y = 2 at x = -2.
At x = -3,
![\text{ y = f(x) = }\sqrt[]{-x-2}\text{ + 2}](https://tex.z-dn.net/?f=%5Ctext%7B%20y%20%3D%20f%28x%29%20%3D%20%7D%5Csqrt%5B%5D%7B-x-2%7D%5Ctext%7B%20%2B%202%7D)
![\text{f(-3) = }\sqrt[]{-(-3)-2}\text{ + 2}](https://tex.z-dn.net/?f=%5Ctext%7Bf%28-3%29%20%3D%20%7D%5Csqrt%5B%5D%7B-%28-3%29-2%7D%5Ctext%7B%20%2B%202%7D)
![\text{= }\sqrt[]{3-2}\text{ + 2}](https://tex.z-dn.net/?f=%5Ctext%7B%3D%20%7D%5Csqrt%5B%5D%7B3-2%7D%5Ctext%7B%20%2B%202%7D)
![\text{= }\sqrt[]{1}\text{ + 2}](https://tex.z-dn.net/?f=%5Ctext%7B%3D%20%7D%5Csqrt%5B%5D%7B1%7D%5Ctext%7B%20%2B%202%7D)


Therefore, y = 3 at x = -3.
At x = -6,
Answer:
(0,5)
Step-by-step explanation:
Y intercept is where line touches y axis so x = 0.
(0,5) since it's only 5 and the others don't count.
Answer:
is the number of graph edges which touch v
Step-by-step explanation:
To find the degree of a graph, figure out all of the vertex degrees. The degree of the graph will be its largest vertex degree. The degree of the network is 5.
Once you know the degree of the verticies we can tell if the graph is a traversable by lookin at odd and even vertecies. First lets look how you tell if a vertex is even or odd.
I believe it would be 8 X (100+30+2) hope that helps!
Answer:
Since it's a straight line, hence the sum of both angles must be 180°
now,
(2y + 1) + (5y - 3) = 180°
now by solving above equation u can get the value of y!
Step-by-step explanation:
id : 688 737 6744
pas : c8SNRa