Given:
p = 90% = 0.9, the probability that an adult has had chickenpox by age 50.
Therefore,
q = 1 - p = 0.1, the probability that an adult has not had chickenpox by age 50.
Part (a)
Because there are only two answers: "Yes" or "No" to whether an adult has had chickenpox by age 50, the use of the binomial distribution is justified.
Part (b):
Calculate the probability that exactly 97 out of 100 sampled adults have had chickenpox.
The probability is
P₁ = ₁₀₀C₉₇ (0.9)⁹⁷ (0.1)³ = 0.0059
Answer: 0.006 or 0.6%
Part (c)
Calculate the probability that exactly 3 adults have not had chickenpox.
Theis probability is equal to
P₂ = 1 - P₁ = 1 - 0.006 = 0.994
Answer: 0.994 or 99.4%
Part (d)
Calculate the probability that at least 1 out of 10 randomly selected adults have had chickenpox.
The probability is
P₃ = ₁₀C₀ (0.9)⁰ (0.1)¹⁰ + ₁₀C₁ (0.9)¹ (0.1)⁹ = 10⁻¹⁰ + 10⁻⁹ = 10⁻⁹ ≈ 0
Answer: 0
Part (e)
Calculate the probability that at most 3 out of 10 randomly selected adults have not had chickenpox.
The probability is
P₄ = 1 - [₁₀C₀ (0.9)⁰(0.1)¹⁰ + ₁₀C₁ (0.9)¹(0.1)⁹ + ₁₀C₂ (0.9)²(0.1)⁸ + ₁₀C₃ (0.9)³(0.1)⁷]
= 1 - (10⁻¹⁰ + 9 x 10⁻⁹ + 3.645 x 10⁻⁷ + 8.748 x 10⁻⁶)
= 1
Answer: 1.0 or 100%
The graph shows that the fee caps at 21 days. If the fee was the same today as it was yesterday, that means she must be at least 22 days late as it is the first day the fee is the same as the day before.
Can you take a picture please?