First thing to do is to solve each of these for y. The first one is y=-4x-3; the second one is y=4x-21; the third one is y=4x+21; the fourth one is y=-4x+3. From that you can tell the positive slopes are found in the second and third equations. Those are the ones we will test now for the point (3, -9). y=-9 and x=3, so let's fill in accordingly. The second equation filled in is -9=4(3)-21. Does the left side equal the right when we do the math? -9=12-21 and -9=-9. So the second one works. Just for the sake of completion, let's do the same with the third: -9=4(3)+21. Does -9=12+21? Of course it doesn't. Our equation is the second one above, y+9=4(x-3).
Answer:
We have the function:
r = -3 + 4*cos(θ)
And we want to find the value of θ where we have the maximum value of r.
For this, we can see that the cosine function has a positive coeficient, so when the cosine function has a maximum, also does the value of r.
We know that the meaximum value of the cosine is 1, and it happens when:
θ = 2n*pi, for any integer value of n.
Then the answer is θ = 2n*pi, in this point we have:
r = -3 + 4*cos (2n*pi) = -3 + 4 = 1
The maximum value of r is 7
(while you may have a biger, in magnitude, value for r if you select the negative solutions for the cosine, you need to remember that the radius must be always a positive number)
Answer:
First answer is 76.50 and the second one is scale factor of 1/2
Step-by-step explanation: Mark brainlist or im deleting my answer :)
You have to do the inverse of divide so multiply to find out a
14x 3= 42
S= 42
Step-by-step explanation:
We have AB = 7, Angle ABC = 70°
and Angle ACB = 90°.
Angle BAC = 180° - 70° - 90° = 20°
(Sum of angles in a triangle = 180°)
Using Trignometry,
AC = 7sin70° = 6.58.
BC = 7cos70° = 2.39.