9514 1404 393
Answer:
∠Z = 34°
∠T = 56°
Step-by-step explanation:
You can solve for x using the measure of the right angle:
90 = 3x +6
30 = x +2 . . . . . divide by 3
28 = x . . . . . . . . subtract 2
Then the measure of T is ...
∠T = 2x° = 2(28)° = 56°
∠Z is its complement: 90° -56° = 34°
The angle measures are ...
m∠Z = 34°
m∠T = 56°
Answer:
x = 5.09, -6.09.
Step-by-step explanation:
1/(x-2) - 1/(x+3) = 1/5
Multiply through by the LCM 5(x-2)(x+3):
5(x + 3) - 5(x - 2) = (x - 2)(x + 3)
5x + 15 - 5x + 10 = x^2 + x - 6
x^2 + x - 31 = 0
x = [ -1 +/- sqrt(1 - 1*1*31)] / 2
x = 5.09, -6.09.
Answer:
<h2><em><u>16</u></em><em><u> </u></em><em><u>yards</u></em></h2>
Step-by-step explanation:
<em><u>Given</u></em><em><u>,</u></em>
Volume of the rectangular prism = 128 cubic yards
Base area of the prism = 8 square yards
<em><u>Let</u></em><em><u>,</u></em>
Height of the prism be = h
<em><u>As</u></em><em><u> </u></em><em><u>we</u></em><em><u> </u></em><em><u>know</u></em><em><u>,</u></em><em><u> </u></em>
Base area × height = Volume of the given prism
<em><u>Therefore</u></em><em><u>,</u></em><em><u> </u></em>
By the problem,
=> 8 sq. yd × h = 128 cu. yd
=> 8h = 128
- <em>(</em><em>On</em><em> </em><em>dividing</em><em> </em><em>8</em><em> </em><em>from</em><em> </em><em>both</em><em> </em><em>sides</em><em>)</em>

- <em>(</em><em>On</em><em> </em><em>Simplification</em><em>)</em>
=> h = 16
<em><u>Hence</u></em><em><u>,</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>height</u></em><em><u> </u></em><em><u>(</u></em><em><u>h</u></em><em><u>)</u></em><em><u> </u></em><em><u>of</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>prism</u></em><em><u> </u></em><em><u>is</u></em><em><u> </u></em><em><u>16</u></em><em><u> </u></em><em><u>yards</u></em><em><u> </u></em><em><u>(</u></em><em><u>Ans</u></em><em><u>)</u></em>
Answer:
We can't solve this
Step-by-step explanation:
You need to provide the slope of the line for it to be solved
Answer:
Jake has 90
Step-by-step explanation:
45 times 2 equals 90