<h2><u>Question</u>:-</h2>
The measurement of the three interior angles of a quadrilaterals are: 85 °, 54 ° and 96 °, what is the measurement of the fourth angle?
<h2><u>Answer</u>:-</h2>
<h3>Given:-</h3>
The measurement of the three interior angles of a quadrilaterals are: 85 °, 54 ° and 96 °
<h3>To Find:-</h3>
The measurement of the fourth angle.
<h2>Solution:-</h2>
By angle sum property of a quadrilateral,
Sum of all the interior angles = 360 °
So, let the fourth angle be x
85 ° + 54 ° + 96 ° + x = 360 °
235 ° + x = 360 °
x = 360 ° - 235 ° = 125 °
<h3>The measurement of the fourth angle is <u>1</u><u>2</u><u>5</u><u> </u><u>°</u>. [Answer]</h3>
To find half of something, we can divide by 2. So 10338/2 = 5169
(Change)/(original) *100
.05/2.87 *100
1.7%
Answer:
Step-by-step explanation:
<u>According to the triangle inequality theorem, any side length is less than the sum of the other two:</u>
- x < 2x + 1 + x + 4 ⇒ x < 3x + 5 ⇒ 2x > - 5 ⇒ x > - 2.5
- 2x + 1 < x + x + 4 ⇒ 2x + 1 < 2x + 4 ⇒ 1 < 4, any value of x
- x + 4 < x + 2x + 1 ⇒ x + 4 < 3x + 1 ⇒ 2x > 3 ⇒ x > 3/2
<u>Common solution of the three inequalities above is:</u>
Correct choice is C