1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Bogdan [553]
3 years ago
12

Find the inverse of an equation below. Rewrite in Y= Form.

Mathematics
1 answer:
Vlada [557]3 years ago
3 0

y = log5 ( x + 2 )

................................

You might be interested in
What is the trigonometric ratio for sin C ?<br><br> Enter your answer, as a simplified fraction.
Contact [7]
By definition we have to:
 Sin (x) = C.O / h
 Where,
 x = angle
 C.O = opposite leg
 h: hypotenuse.
 Substituting values we have:
 Sin (C) = AB / 82
 We should look for AB. For this, we use the following relationship:
 AB ^ 2 + 80 ^ 2 = 82 ^ 2
 Clearing AB:
 AB = root ((82 ^ 2) - (80 ^ 2))
 AB = 18
 Substituting we have:
 Sin (C) = 18/82
 Simplifying:
 Sin (C) = 9/41

 Answer:
 
the trigonometric ratio for sin C is:
 Sin (C) = 9/41
5 0
3 years ago
Help please -2x+3=x+12
BARSIC [14]

Step-by-step explanation:

-2x+3=x+12

combin like terms

-2x-x=12-3

-3x=9

x=9/-3

x=-3

3 0
3 years ago
Read 2 more answers
Fifteen less than four times a number
Nostrana [21]
The equation for this should be 4n - 15
3 0
3 years ago
10.2 = 0.6y what is y
AVprozaik [17]

Answer:

y = 17

Step-by-step explanation:

isolate the variable by dividing each side by factors that don't contain the variable.

6 0
3 years ago
BRAINLIESSTTTT ASAP !!!!!!!!!! 20 pointssss
Mars2501 [29]
Answers:  
_____________________________________________________
   Part A)  " (3x + 4) " units  . 
_____________________________________________________
   Part B)  "The dimensions of the rectangle are:

                             " (4x + 5y) " units ;  <u>AND</u>:  " (4x − 5y)"  units."
_____________________________________________________

Explanation for  Part A):
_____________________________________________________

Since each side length of a square is the same; 
   
    Area = Length * width = L * w ;  L = w  = s = s ;

      in which:  " s = side length" ;

So, the Area of a square, "A"  = L * w = s * s = s² ;

{<u>Note</u>:  A "square" is a rectangle with 4 (four) equal sides.}.

→  Each side length, "s", of a square is equal.

Given:  s² = "(9x² + 24x + 16)" square units ;

Find "s" by factoring: "(9x² + 24x + 16)" completely:

   →  " 9x² + 24x + 16 ";

Factor by "breaking into groups" :

"(9x² + 24x + 16)"  = 

    →  "(9x² + 12x) (12x + 16)" ;
_______________________________________________________

Given:   " (9x² + 24x + 16) " ; 
_______________________________________________________
Let us start with the term:
_______________________________________________________

" (9x² + 12x) " ; 

    →  Factor out a "3x" ;  → as follows:
_______________________________________

    → " 3x (3x + 4) " ; 

Then, take the term:
_______________________________________
    → " (12x + 16) " ;

And factor out a "4" ;   →  as follows:
_______________________________________

    → " 4 (3x + 4) " 
_______________________________________
We have:

" 9x² + 24x + 16 " ;

    =  " 3x (3x + 4)  +  4(3x + 4) " ;
_______________________________________
Now, notice the term:  "(3x + 4)" ; 

We can "factor out" this term:

3x (3x + 4)  +  4(3x + 4)  = 

     →  " (3x + 4) (3x + 4) " .  → which is the fully factored form of:

                                                   " 9x² + 24x + 16 "  ; 
____________________________________________________
     →  Or; write:  "  (3x + 4) (3x + 4)" ; as:  " (3x + 4)² " .
____________________________________________________
     →  So,  "s² = 9x² + 24x + 16 " ; 

Rewrite as:  " s² = (3x + 4)² " .

     →  Solve for the "positive value of "s" ; 

     →  {since the "side length of a square" cannot be a "negative" value.}.
____________________________________________________
     →  Take the "positive square root of EACH SIDE of the equation; 
              to isolate "s" on one side of the equation; & to solve for "s" ;

     →  ⁺√(s²)  =  ⁺√[(3x + 4)²]   '

To get:

     →  s  = " (3x + 4)" units .
_______________________________________________________

Part A):  The answer is:  "(3x + 4)" units.
____________________________________________________

Explanation for Part B):

_________________________________________________________<span>

The area, "A" of a rectangle is:

    A = L * w ;  

 in which "A" is the "area" of the rectangle;
                "L" is the "length" of the rectangle; 
                "w" is the "width" of the rectangle; 
_______________________________________________________
  Given:  " A = </span>(16x² − 25y²) square units" ;  
   
       →  We are asked to find the dimensions, "L" & "w" ;
       →  by factoring the given "area" expression completely:
____________________________________________________
  → Factor:  " (16x² − 25y²) square units " completely '

Note that:  "16" and: "25" are both "perfect squares" ;
      
We can rewrite: " (16x² − 25y²) "  ;   as:

       =   " (4²x²)  −  (5²y²) " ; and further rewrite the expression:
________________________________________________________
Note:  
________________________________________________________
" (16x²) " ;  can be written as:  "(4x)² " ;

 ↔ " (4x)²  =  "(4²)(x²)" = 16x² "


Note:  The following property of exponents:

         →  (xy)ⁿ = xⁿ yⁿ ;    →  As such:  " 16x² = (4²x²) = (4x)² " . 
_______________________________________________________
Note:
_______________________________________________________

     →   " (25x²) " ;  can be written as:  " (5x)² " ; 

        ↔   "( 5x)²  =  "(5²)(x²)" = 25x² " ; 

Note:  The following property of exponents:

         →  (xy)ⁿ = xⁿ yⁿ ;    →  As such:  " 25x² = (5²x²) = (5x)² " . 
______________________________________________________

→  So, we can rewrite:  " (16x² − 25y²) " ;  

as:  " (4x)² − (5y)² " ;   
 
    → {Note:  We substitute: "(4x)² "  for "(16x²)" ; & "(5y)² "  for "(25y²)" .} . ; 
_______________________________________________________
→  We have:  " (4x)² − (5y)² " ;

→  Note that we are asked to "factor completely" ; 

→  Note that:  " x² − y² = (x + y) (x − y) " ;

      → {This property is known as the "<u>difference of squares</u>".}.

→ As such:  " (4x)² − (5y)² " = " (4x + 5y) (4x − 5y) " .
_______________________________________________________
Part B):  The answer is:  "The dimensions of the rectangle are:

                              " (4x + 5y) " units ;  AND:  " (4x − 5y)"  units."
_______________________________________________________
7 0
3 years ago
Other questions:
  • The length of a rectangular block is 20 inches. Its width is half its length.
    11·1 answer
  • PLEASE HELP! WILL MARK BRAINLIEST!
    7·1 answer
  • 7: In the rhombus, m∠1=10x, m∠2=x + y, and m∠3= 5z. Find the values of x, y, and z.
    5·1 answer
  • How much is 20 times 96
    15·2 answers
  • Simplify (12ab)(3t). 15abt 123abt 36abt
    14·2 answers
  • Emmanuel collected 49 Leaves last week he collected the same number of leaves each day how many leaves did he collect on Monday
    13·2 answers
  • Currently 1 United States dollar equals 19.25 Mexican pesos. If you exchanged 725 Mexican pesos for US dollars, what amount woul
    14·1 answer
  • In 2015, there were roughly 1x10^6 high school football players and 2x10^3 professional football players in the United States.
    10·1 answer
  • In 2 ½ hours, Joaquin can bake 4 dozen cookies. What is his unit rate in dozen cookies per hour?
    14·1 answer
  • Subtract 7xy (x² - 2xy + 3y²) -<br>8x (x²y - 4xy + 7x y2) from<br>3y(4x²y-5xy +8xy²)<br>​
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!